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1. Introduction

In this note we generalize the following problem involving three congruent tangent
circles (see Figure 1).

Problem 1.1. Let ACDE be a square with a point B on the side DE. The
inradius of the triangle BCD is r, and one of two mutually touching circles of
radius r touches the sides BE and AE, and the other touches the sides AB and
AE. Show that the inradius of the triangle ABC equals 2r.
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Figure 1.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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The problem was proposed by Kobayashi (小林捨吉) and Yagawa (矢川雄七郎) in
a sangaku dated 1849 [4], and can also be found in [5]. A similar problem in which
ACDE is a rectangle was proposed by Uchida (内田久之丞) [7], [8]. Solutions of
those problems can be found in [1, p. 18], [3], [6], [7] and [8]. A generalization
in which there are arbitrary number of tangent circles of the same radius in the
triangles BCD and BAE can be found in [6]. In this paper we give another
generalization of Problem 1.1.

2. Generalization

Let H be the foot of perpendicular from B to CA in Figure 1. The rotation
through 180◦ about the midpoint of BC takes CD to BH and the incircle of BCD
to the incircle of BCH, and also the rotation through 180◦ about the midpoint of
AB takes AE to BH and the two circles in BAE to the two circles in BAH (see
Figure 2). The problem is generalized as follows (see Figures 3 to 8 and 10 to 14):
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Figure 8: −r ≤ t < 0

Theorem 2.1. Let us assume that α, β and γ are circles of radius r such that
β touches perpendicular lines b and h meeting in a point H, α is the reflection of
β in the remaining tangent of β parallel to b, and γ is the reflection of β in h.
Let B be a point on h, and let a (resp. c) be the tangent of α (resp. γ) from B
different from h if B is not the point of tangency of α (resp. γ) and h, otherwise
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a = h (resp. c = h). If |BH| ̸= 2r, there is a circle of radius 2r touching the line
a (resp. b, c) from the same side as α (resp. β, γ).

Proof. We set up a rectangular coordinate system so that the centers of α and
γ have coordinates (−r, r) and (r,−r), respectively, i.e., the x-axis overlaps with
the remaining external common tangents of β and γ, and the y-axis overlaps with
h. Let (0, t) be the coordinates of B. If t ̸= 0, let ε be the circle of radius 2r
with center with coordinates (xε, yε) = (−2r2/t, 0). Let ti = t − ir, ua = t2t,

va = −2rt1, fa(x, y) = uax + vay + 2rt1t and sa =
√

u2
a + v2a, and let uc = t−2t,

vc = 2rt−1, fc(x, y) = ucx + vcy − 2rt−1t and sc =
√

u2
c + v2c . Then fa(0, t) = 0,

sa = t21+ r2, fa(−r, r)/sa = r and fa(xε, yε)/sa = 2r. Hence fa = 0 is an equation
of a, and α and ε touch a from the same side. Also fc(0, t) = 0, sc = t2−1 + r2,
fc(r,−r)/sc = −r and fc(xε, yε)/sc = −2r. Therefore fc = 0 is an equation of c,
and γ and ε touch c from the same side. The rest of the theorem is obvious. □
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√
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Figure 14: 2r ≤ t

The case 2r < t was considered in [1, 3, 4, 5, 6, 7, 8]. The point of tangency of a
(resp. c) and ε moves on ε counterclockwise (resp. clockwise) when the value of
t increases (see Figures 3 to 8 and Figures 10 to 14 in these orders). If t = −2r,
then c coincides with b, and γ, ε and c touch at the point with coordinates (r,−2r)
(see Figure 4). Let ma = −ua/va and mc = −uc/vc in the case vavc ̸= 0. Solving
the equation ma = mc for t, we get that the lines a and c coincide if and only if
t = ±

√
2r or t = 0. If t = ±

√
2r, then ma = −1 and ε touches a at B (see Figures

6 and 12). Let us assume t = 0. Then B coincides with the origin and a and c
coincide with the x-axis, i.e., ma = 0 (see Figure 9). While we have −2r2/t = 0
in the sense of the division by zero [2]. Therefore if ε is still the circle of radius
2r with center with coordinates (−2r2/t, 0), the center of ε coincides with the
origin. Each of the tangents at the points of intersection of ε and a is parallel to
h. Therefore they have slope tan 90◦, where also notice that tan 90◦ has meaning
and equals 0 in the sense of the division by zero. Therefore the slopes of the
tangents and a are the same. Hence we can still consider that a and c touch ε in
this case.
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Solving the equation mamc = −1 for t, we get that a and c are perpendicular if
and only if t =

(
±1±

√
3
)
r, and ma = ±3±

1
2 in this event. Let us consider the

case t =
(
1 +

√
3
)
r. Let A (resp. C) be the point of intersection of a (resp. c) and

b (see Figure 15). Since ma = 1/
√
3, we have ∠BAC = 30◦. The reflection of a in

the line joining C and the center of ε is the perpendicular to CA touching ε, while
2|BC| = |CA|. Hence the perpendicular bisector of CA touches ε. Let E and α′

(resp. D and γ′) be the images of H and α (resp. γ) by the rotation through 180◦

about the midpoint of AB (resp. BC). Figure 16 is made by ABC, BCD, ε,
α′ and γ′ with their reflections in the perpendicular bisector of CA together with
several added circles of radius r and line segments.
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3. Triangles with height equal to the base

In Figure 2, |CA| = |BH| holds. In this section we characterize triangles with
this property in a general way.
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Proposition 3.1. Let H be the foot of perpendicular from B to CA for a triangle
ABC with inradius r0. Let δ and ε be the circles of radius r ≤ r0 such that δ
(resp. ε) touches the sides CA and AB (resp. BC) from the inside of ABC. Let
δ′ and ε′ be the circles of radius r touching the side CA from the side opposite to
B such that δ′ (resp. ε′) touches the line AB (resp. BC) from the same side as δ
(resp. ε). If the distance between the centers of δ and ε (resp. δ′ and ε′) equals d
(resp. d′), we have

(1)
d′ − d

2r
=

|CA|
|BH|

.
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Proof. If we translate the circles ε and ε′ so that the image of ε coincides with δ,
then the centers of the circles δ′ and δ and the center of the image of ε′ form a
triangle similar to ABC (see Figure 17). Hence we have (1). □

The proposition shows that |CA| = n|BH| and d′ − d = 2nr are equivalent for a
natural number n. Hence we have the next theorem (see Figure 18).

Theorem 3.1. Let H be the foot of perpendicular from B to CA for a triangle
ABC. Let δ1, δ2, · · · , δm be the circles of radius r such that they touch the side CA
from the inside of ABC and δ1 touches the side AB, δi (i = 2, 3, · · · ,m) touches
δi−1 from the side opposite to A and δm touches the side BC. Then |CA| = n|BH|
for a natural number n if and only if there exist circles δ′1, δ

′
2, · · · , δ′m+n of radius

r such that they touch the side CA from the side opposite to B, δ′1 touches the
line AB from the same side as δ1, δ

′
i (i = 2, 3, · · · ,m + n) touches δ′i−1 from the

side opposite to A, and δ′n+m touches the line BC from the same side as δm.
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