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1. Introduction and Preliminaries

Two externally touching congruent circles with common external tangent s are
called two congruent circles on a line or two congruent circles on s. Let α and β
be externally touching circles of radii a and b, respectively with external common
tangent s. In this note, we consider two congruent circles on s such that they
touch s from the same side as α, one of which touches α externally and the other
touches β externally. If each of ρ1, ρ2, ρ3 is a circle or a line and they form a
curvilinear triangle, the triangle and its incircle are denoted by T (ρ1, ρ2, ρ3) and
I(ρ1, ρ2, ρ3), respectively. The following problem can be found in [1], [2], [3], [4, 5],
[6], [8], [9] (see Figure 1).
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Figure 1.

Problem 1. Let γ and γ′ be two congruent circles on s of radius c such that they
lie in T (α, β, s), and γ touches α and γ′ touches β. Find c in terms of a and b.

We consider the problem in a general way. We use the next proposition.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Proposition 1.1. The following statements hold.
(i) If s touches α and β at points P and Q, |PQ| = 2

√
ab.

(ii) If c is the radius of I(α, β, s), then

(1)
1√
c
=

1√
a
+

1√
b
.

2. Main results

We get the following theorem (see Figure 2).
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Figure 2

Theorem 2.1. Let γ and γ′ (resp. δ and δ′) be two congruent circles on s of
radius c (resp. d) such that α and β lie in T (δ, δ′, s), γ and γ′ lie in T (α, β, s), γ
and δ touch α externally and γ′ and δ′ touch β externally. The following relations
hold.
(i)

√
a+

√
b =

√
d−

√
c.

(ii) c =
w −

√
w2 − 4ab

2
and d =

w +
√
w2 − 4ab

2
, where w = a+ b+ 4

√
ab.

(iii) ab = cd.

Proof. By Proposition 1.1(i), we get

(2) 2
√
ab = 2

√
ac+ 2

√
bc+ 2c

and

(3) 2
√
ab+ 2

√
ad+ 2

√
bd = 2d.

Eliminating
√
ab from (2) and (3), we get

(√
a+

√
b
)(√

c+
√
d
)
= d− c. This

proves (i). Solving (2) and (3) for c and d, we have c =
(
w ±

√
w2 − 4ab

)
/2 and

d =
(
w ±

√
w2 − 4ab

)
/2. This proves (ii). The part (iii) follows from (ii). □

Problems asking to find the relation (i) of the next theorem can be found in [7]
and [10].

Theorem 2.2. Assume that γ, γ′, δ, δ′ are as in Theorem 2.1. If e and e′ are
the radii of the circles ε = I(α, γ, s) and ε′ = I(β, γ′, s), respectively, also f and
f ′ are the radii of the circles ζ = I(α, δ, s) and ζ ′ = I(β, δ′, s), respectively, then
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the following relations hold.
(i) c2 = 4ee′. (ii) ab = 4ff ′.

Proof. By Proposition 1.1(ii) we get

1√
e
=

1√
a
+

1√
c

and
1√
e′

=
1√
b
+

1√
c

(see Figure 3). Therefore by Theorem 2.1(i), (iii) we get

1√
ee′

=

(
1√
a
+

1√
c

)(
1√
b
+

1√
c

)
=

c+
√
c(
√
a+

√
b) +

√
ab

c
√
ab

=
c+

√
c
(√

a+
√
b
)
+
√
cd

c
√
cd

=

√
c+

√
a+

√
b+

√
d

c
√
d

=
2
√
d

c
√
d
=

2

c
.

This proves (i). Similarly from

1√
f
=

1√
a
+

1√
d

and
1√
f ′ =

1√
b
+

1√
d
,

we get

1√
ff ′ =

(
1√
a
+

1√
d

)(
1√
b
+

1√
d

)
=

d+
√
d(
√
a+

√
b) +

√
ab

d
√
ab

=
d+

√
d(
√
a+

√
b) +

√
cd

d
√
ab

=

√
d+

√
a+

√
b+

√
c√

abd
=

2
√
d√

abd
=

2√
ab

.

This proves (ii). □
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Figure 3
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[7] Endan Zasso (演段雑俎), Tohoku Univ. WDB,

http://www.i-repository.net/il/meta_pub/G0000398wasan_4100003750.
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