Haga's theorems in paper folding and related theorems in Wasan geometry Part 1

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@protonmail.com

Abstract

Haga's fold in paper folding is generalized. Recent generalization of Haga's theorems and problems in Wasan geometry involving Haga's fold are also generalized.

Keywords. Haga's fold, Haga's theorems, incircles and excircles of right triangles
Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction

Let $A B C D$ be a piece of square paper with a point E on the side $D A$. We fold the paper so that the corner C coincides with E and the side $B C$ is carried into $G E$, which meets the side $A B$ in a point F (see Figure 1). We call this Haga's fold. Unifying Haga's theorems in paper folding in [2], we obtained the following theorem [8].

Figure 1.
Theorem 1.1. The relation $|A E||A F|=2|D E||B F|$ holds for Haga's fold.

[^0]In this paper we generalize Haga's fold and show that Theorem 1.1 holds for the generalized Haga's fold. Haga's fold was also considered in Wasan geometry, and one of the most famous results says that the inradius of the right triangle $A F E$ equals the overhang $|F G|$. We also generalize this result and show that not only the incircle of $A F E$, but the excircles of it play important roles. There are two triangles similar to $A F E$ in the figure made by the generalized Haga's fold. We show that there are several simple relationships between the incircles and the excircles of the three similar triangles.

2. Preliminaries

In this section we summarize results for incircles and excircles of triangles, which are used in later sections. Let $a=|B C|, b=|C A|$ and $c=|A B|$ for a triangle $A B C$.

Figure 2.

Figure 3.

Figure 4.

Theorem 2.1. Let δ be the incircle or one of the excircles of a triangle $A B C$ touching the lines $A B$ and $C A$ at points Z and Y, respectively. If θ is the angle subtended by δ from A, we get

$$
\sin ^{2} \frac{\theta}{2}=\frac{|B Z||C Y|}{|A B||A C|}
$$

Proof. There are two cases to be considered: (i) δ is the incircle of $A B C$ or δ touches $B C$ from the side opposite to A, i.e., $\theta=\angle C A B$ (see Figures 2 and 3). (ii) δ touches the side $A B$ (resp. $C A$) from the side opposite to C (resp. B), i.e., $\theta+\angle C A B=180^{\circ}$ (see Figure 4). We prove the case (ii). Let us assume that δ touches the side $A B$ from the side opposite to C. Then

$$
\begin{aligned}
\sin ^{2} \frac{\theta}{2} & =\frac{1-\cos \theta}{2}=\frac{1+\cos \angle C A B}{2}=\frac{1+\left(b^{2}+c^{2}-a^{2}\right) /(2 b c)}{2} \\
& =\frac{(b+c)^{2}-a^{2}}{4 b c}=\frac{(a+b+c)(b+c-a)}{4 b c}=\frac{|B Z||C Y|}{b c},
\end{aligned}
$$

because $a+b+c=a+b+|B Z|+|A Y|=(a+|B Z|)+(b+|A Y|)=2|C Y|$, and $b+c-a=(|C Y|-|A Z|)+(|A Z|+|B Z|)-(|C Y|-|B Z|)=2|B Z|$. The rest of the theorem can be proved in a similar way.

Let γ, γ_{a} be the incircle of $A B C$, the excircle of $A B C$ touching $B C$ from the side opposite to A, respectively. Let r, r_{a} be the radii of γ, γ_{a}, respectively.

Theorem 2.2. If $A B C$ is a right triangle with right angle at A, the following statements hold.
(i) The remaining common tangent of each of the pairs γ_{a} and γ_{b}, γ_{a} and γ_{c}, γ and γ_{b}, γ and γ_{c} is perpendicular to $B C$ [9], and $r_{a}=r+r_{b}+r_{c}$ holds [3].
(ii) $r r_{a}=r_{b} r_{c}[3]$.
(iii) $r+r_{b}=b$ and $r+r_{c}=c$.

Proof. $r+r_{b}=(-a+b+c) / 2+(a+b-c) / 2=b$. This proves (iii).

3. Generalized Haga's fold

In this section, we generalize Haga's fold and Theorem 1.1. The figure made by Haga's fold is uniquely determined if we fix a point E on the side $D A$ for a square $A B C D$. We now consider E is a point on the line $D A$ for the square $A B C D$ and assume that m is the perpendicular bisector of the segment $C E, G$ is the reflection of B in m, and F is the point of intersection of the lines $A B$ and $E G$ if they intersect, where we define $F=B$ if $E=A$. The figure consisting of $A B C D$ and the points E, F (if exists) and G is denoted by \mathcal{H}. If $A B C D$ is a piece of square paper and m passes through the inside of $A B C D$, we can really fold the paper with the crease line m so that $B C$ is carried into $G E$ (see Figures from 7 to 11). We thus call \mathcal{H} the figure made by generalized Haga's fold, and m the crease line of \mathcal{H}.

Figure 5: (h1)

Figure 7: (h3)

Figure 6: (h2)

Figure 8: (h4)

Let $b=|D E|, d=|A B|$. There are seven cases to be considered for \mathcal{H} :
(h1) D lies between E and A and $b>d$ (see Figure 5),
(h2) D is the midpoint of $E A$, i.e., $b=d$ (see Figure 6),
(h3) D lies between E and A and $b<d$ (see Figure 7),
(h4) $D=E$ (see Figure 8),
(h5) E lies between D and A (see Figure 9),
(h6) $E=A$ (see Figure 10),
(h7) A lies between D and E (see Figures 11, 12, 13).

Figure 9: (h5)

Figure 10: (h6)

Figure 11: (h7), $|A E|<\sqrt{2} d$

Figure 12: (h7), $|A E|=\sqrt{2} d$

Figure 13: (h7), $|A E|>\sqrt{2} d$

The point F does not exists only in the case (h2). Let $c=|B F|$, if F exist. Let δ be the circle with center C passing through B.

Proposition 3.1. The followings hold for \mathcal{H}.
(i) The line EG touches the circle δ.
(ii) $|E F|= \begin{cases}c-b & \text { in the case (h3), } \\ b+c & \text { in the cases (h1), (h4), (h5), (h6), } \\ b-c & \text { in the case (h7). }\end{cases}$

Proof. The circle with center E passing through G has radius d, and touches the line $B C$ (see Figures 5 to 13). While the reflections of this circle and the line $B C$ in the crease line m are δ and the line $E G$. This proves (i). The part (ii) follows from (i).

Notice that $b=0$ and $|A F|=0$ are equivalent, also $c=0$ and $|A E|=0$ are equivalent. Therefore $|A E||A F|=0$ if and only if $b c=0$. The next theorem is a generalization of Theorem 1.1.

Theorem 3.1. If the lines $A B$ and $E G$ intersect, $|A E||A F|=2 b c$ holds for \mathcal{H}.
Proof. If $|A E||A F|=0, b c=0$. If $|A E||A F| \neq 0$, we consider the points E, F as B, C in Theorem 2.1 and D, B as Z, Y, respectively, and get

$$
\frac{b c}{|A E||A F|}=\sin ^{2} 45^{\circ}=\frac{1}{2} .
$$

4. Incircle and excircles of the triangle $A F E$

From now on we assume that the lines $A B$ and $E G$ intersect. Therefore the case (h2) is not considered. We consider the result in Wasan geometry saying that the inradius of $A F E$ equals the overhang $|F G|$ in the case (h5) [1], [5], [10], [11]. The result has been quoted from the sangaku problem dated 1893 in [1], but the book [10] is older. Several new results related to this are also given in this section. We now call (h1), (h3), (h5) and (h7) the ordinary cases, and (h4) and (h6) the degenerate cases.

Figure 14: (h1)

We define three circles (see Figures 14 to 19). Let $\alpha(\neq \delta)$ be the incircle or one of the excircles of $A F E$ with center lying on the line $A C$ in the ordinary cases, the point A in the degenerate cases. Let $\beta(\neq \alpha)$ be the incircle or one of the excircles of $A F E$ with center lying on the line joining E and the center of α in the ordinary cases, the point A in the case (h4), and the reflection of δ in the line $A B$ in the case (h6). Let $\gamma(\neq \alpha)$ be the incircle or one of the excircles of $A F E$ with center lying on the line joining F and the center of α in the ordinary cases, the reflection of δ in the line $D A$ in the case (h4), and the point A in the case (h6). Let $a=|F G|$.

Figure 15: (h3)

Figure 16: (h4)

Figure 17: (h5)

Theorem 4.1. The radii of the circles α, β and γ equal a, b and c, respectively.
Proof. We prove that the radius of α equals a. The degenerate cases are trivial. The proof in the ordinary cases is similar to that for Haga's fold given in [4]. We
prove the case (h1) (see Figure 14). By Proposition 3.1(ii), the radius of α equals

$$
\frac{|A E|+|A F|+|E F|}{2}=\frac{(b+d)+(c+d)+|E F|}{2}=d+|E F|=a .
$$

The other cases can be proved in a similar way. We now prove that the radius of β equals b. The degenerate cases are obvious. In the case (h1) (see Figure 14), the radius of β equals

$$
\frac{|A E|-|A F|+|E F|}{2}=\frac{(b+d)-(c+d)+(b+c)}{2}=b
$$

by Proposition 3.1(ii). The rest of the theorem can be proved in a similar way.

Figure 18: (h6)

Figure 19: (h7)

The set $\{\alpha, \beta, \gamma, \delta\}$ consists of the incircle and the excircles of the triangle $A F E$, if $A F E$ is proper (see Figures 20 to 23). Therefore $a=b+c+d, c=a+b+d$, $d=a+b+c, b=a+c+d$ hold in the cases (h1), (h3), (h5), (h7), respectively by Theorem 2.2(i). The equation $d=a+b+c$ also holds in the degenerate cases. Hence we get (i) of the next theorem. The part (ii) in the ordinary cases follows from Theorem 2.2(ii) and the degenerate cases are trivial.

Theorem 4.2. The following relations hold.
(i) $-a+b+c+d=0$ in the case (h1),
$a+b-c+d=0 \quad$ in the case (h3),
$a+b+c-d=0$ in the case (h4), (h5), (h6),
$a-b+c+d=0$ in the case (h7).
(ii) $a d=b c$.

Theorem 4.3. The circle β touches $E G$ at the point G or coincides with G.
Proof. The degenerate cases are trivial. In the cases (h1) and (h3), the distance between E and the point of contact of β and the line $D A$ equals $|A E|-b=$ $(b+d)-b=d$, i.e., β touches $E G$ at G. The other cases can be proved similarly.

Recall that the figure \mathcal{H} is uniquely determined if a point E on the line $D A$ is fixed for a square $A B C D$. For a triangle $A^{\prime} F^{\prime} E^{\prime}$ with right angle at A^{\prime}, we can construct \mathcal{H} such that $A=A^{\prime}, F=F^{\prime}, E=E^{\prime}$ as follows: Let $A=A^{\prime}, F=F^{\prime}$, $E=E^{\prime}$ and let δ be the incircle or one of the excircles of $A F E$ with center C. Let B and D be the feet of perpendiculars from C to the lines $A F$ and $A E$, respectively. Then the square $A B C D$ with the point E form a desired figure \mathcal{H}.

Since there are four choices of the circle δ for $A F E$, we can construct four such figures.

Figure 20: $a=b+c+d$ in the case (h1)

Figure 21: $c=a+b+d$ in the case (h3)

Figure 22: $d=a+b+c$ in the case (h5)

Figure 23: $b=a+c+d$ in the case (h7)

5. Circumcircle of $A F E$

The circumcircle of $A F E$ and the incircle of the triangle made by the lines $B C$, $C D$ and $E G$ are congruent in the case (h5) (see Figure 26) [7]. In this section
we generalize this fact. Notice that m and $A C$ are parallel only in the case (h2) and intersect in the other cases. Let ε_{1} be the circle with center at the point of intersection of m and $A C$ touching the line $B C$ (see Figures 24 to 27). The definition shows that ε_{1} touches $E G$ and $C D$, and coincides with the incircle of $A B C D$ in the degenerate cases. Let r_{1} be the radius of ε_{1}. The next theorem shows that if $A F E$ is a proper triangle, ε_{1} and the circumcircle of $A F E$ are congruent and one of the two circles passes through the center of the other.

Figure 24: (h1)

Figure 26: (h5)

Figure 25: (h3)

Figure 27: (h7)

Theorem 5.1. The following statements are true.
(i) $r_{1}=|E F| / 2$.
(ii) ε_{1} touches $E F$ at its midpoint.

Proof. We prove (i). The degenerate cases are obvious. Assume that the lines $B C$ and $E G$ meet in a point K and $k=|B K|$. We prove the case (h3) (see Figure 28). Since the triangles $B F K$ and $A F E$ are similar, $k /|B F|=|A E| /|A F|$, i.e., $k=c|A E| /|A F|$. Therefore by Theorem 4.2(ii),

$$
|C K|=k-d=\frac{c|A E|-d|A F|}{|A F|}=\frac{c(b+d)-d(c-d)}{|A F|}=\frac{b c+d^{2}}{|A F|}=\frac{d(a+d)}{|A F|} .
$$

From the similar triangles $C G K$ and $A F E$, we have $|C K| / r_{1}=|A E| / a$. Therefore by Theorems 3.1, 4.2 and Proposition 3.1(ii), we get

$$
r_{1}=\frac{|C K|}{|A E|} a=\frac{d(a+d) a}{|A E||A F|}=\frac{a d(c-b)}{2 b c}=\frac{c-b}{2}=\frac{|E F|}{2} .
$$

This proves (i). The other case can be proved similarly. We prove (ii). The degenerate cases are trivial. The perpendicular to $E F$ at E touches ε_{1}, for it is the reflection of the line $C D$ in m and $C D$ touches ε_{1}. Therefore the perpendicular to $E F$ at F also touches ε_{1} by (i). This proves (ii).

Figure 28.

6. Incircles and excircles of another triangles

Let us assume that the crease line m meets the lines $A B$ and $C D$ in points H and I, respectively for \mathcal{H}. In this section we consider the incircles and the excircles of the triangles $G F H$ and $D E I$, which are similar to $A F E$. The sum of the inradii of the triangles $G F H$ and $D E I$ equals a in the case (h5) [6], [10] (see Figure 29). We generalize this fact and give several new results.

Figure 29.
Proposition 6.1. The following relation holds for \mathcal{H}.
$a=\left\{\begin{array}{l}|F H|-|D I| \quad \text { in the cases (h1), (h3), } \\ |D I|-|F H| \quad \text { in the cases (h4), (h5), (h6), (h7). }\end{array}\right.$

Proof. It is sufficient to consider the ordinary cases. We prove the cases (h1) and (h3) (see Figures 30 and 31). Let T be the point of contact of the circle δ and the line $E G$. The lines $D T$ and m are parallel, since $D T$ is perpendicular to $C E$. Let J be the point of intersection of the lines $A B$ and $D T$. Then the triangles $D A J$ and CTE are congruent. Hence $|A J|=|E T|$. Therefore we get $|G T|=|B J|$, while T is the reflection of B in the line $C F$. Therefore J is the reflection of G in $C F$, i.e., $|F J|=a$. Hence $|D I|=|H J|=|F H|-|F J|=|F H|-a$. The other cases can be proved similarly.

Figure 30: (h1)

Figure 32: (h1)

Figure 31: (h3)

Figure 33: (h3)

We define three circles (see Figures 32 to 35). Let ε_{2} be the excircle of $G F H$ touching $F G$ from the side opposite to H in the cases (h1) and (h3), the point A (resp. B) in the case (h4) (resp. (h6)), and the incircle of GFH in the cases (h5) and (h7). Let ε_{3} be the incircle or one of excircles of $G F H$ touching $F G$ from the side opposite to ε_{2} in the ordinary cases, and the point A (resp. B) in the case (h4) (resp. (h6)). Let ε_{4} be the excircle of $D E I$ touching $D E$ from the side opposite to I in the cases (h1) and (h3), the point D in the degenerate cases, and
the incircle of $D E I$ in the cases (h5) and (h7). Let $r_{i}(i=2,3,4)$ be the radius of ε_{i}.

Figure 34: (h5)

Figure 35: (h7)

Theorem 6.1. The following relations are true for \mathcal{H}.
(i) $r_{3}=r_{4}$.
(ii) $a=r_{2}+r_{4}$.

Proof. We prove (i). It is sufficient to prove the ordinary cases. In the case (h1), we have

$$
r_{3}=\frac{|F G|+|G H|-|F H|}{2}=\frac{a-(|F H|-|B H|)}{2}=\frac{a-c}{2}
$$

and

$$
r_{4}=\frac{|D E|-|D I|+|E I|}{2}=\frac{b-|D I|+d+|D I|}{2}=\frac{b+d}{2} .
$$

Therefore $r_{3}=r_{4}$ by Theorem 4.2(i). In the case (h3), we have

$$
r_{3}=\frac{|F G|+|G H|-|F H|}{2}=\frac{a+c-2|F H|}{2}
$$

and

$$
r_{4}=\frac{|D E|-|D I|+|E I|}{2}=\frac{b-2|D I|+d}{2}
$$

Therefore by Theorem 4.2(i) and Proposition 6.1,

$$
r_{3}-r_{4}=\frac{a+c-b-d-2|F H|+2|D I|}{2}=a-|F H|+|D I|=0 .
$$

The rest of (i) can be proved similarly. By Theorem 2.2(iii), $a=r_{2}+r_{3}=r_{2}+r_{4}$. This proves (ii).

We consider two more circles (see Figures 32 to 35). Let $\varepsilon_{5}\left(\neq \varepsilon_{3}\right)$ be the incircle or one of the excircles of $G F H$ with center lying on the line joining F and the center of ε_{3} in the ordinary cases, the incircle of $A B C D$ in the case (h4), and the point B in the case (h6). Let $\varepsilon_{6}\left(\neq \varepsilon_{4}\right)$ be the incircle or one of the excircles of $D E I$ with center lying on the line joining E and the center of ε_{4} in the ordinary cases, the reflection of the incircle of $A B C D$ in the line $C D$ in the case (h4), and
the point D in the case（h6）．The proof of the next theorem is similar to that of Theorem 6．1（i）and is omitted．
Theorem 6．2．The circles ε_{5} and ε_{6} are congruent．
If t is the remaining common tangent of ε_{3} and ε_{5} in the ordinary cases，then t is perpendicular to $A B$ by Theorem 2．2（i）．Hence the triangle formed by the lines $G H, A B$ and t is congruent to $D E I$ ．Therefore the figure consisting of ε_{3} and ε_{5} is congruent to the figure consisting of ε_{4} and ε_{6} ．The statement is also true in the degenerated cases．

7．Special case

The crease line m touch the circle δ if and only if $|D E|=\sqrt{3} d$ ．Therefore this case happens in the cases（h1）and（h7）．In this event $A F E$ is a 30－60－90－degree triangle and the triangle made by $m, E G, D A$ is equilateral（see Figures 36 and 37）．The triangle made by $C D, C E$ and the reflection of $C D$ in m is also equilateral．

Figure 36：（h1）

Figure 37：（h7）

8．Conclusion

Haga＇s fold is generalized，and the recent generalization of Haga＇s theorems holds for the generalized Haga＇s fold，which is derived as a very special case from a the－ orem on incircles and excircles of triangles．There are several simple relationships between the incircles and the excircles of the three similar triangles $A F E, G F H$ and $D E I$ in the figure made by the generalized Haga＇s fold．

Acknowledgments．The author expresses his thanks to Professor Miwako Tonami for her useful information about Wasan books．

References

［1］Fukushimaken Wasan Kenkyū Hozonkai（福島県和算研究保存会）ed．，The Sangaku in Fukushima（福島の算額），Sōju Shuppan（蒼樹出版）， 1989.
［2］K．Haga，Origamics：Mathematical Explorations through Paper Folding，World Scientific， 2008.
［3］D．W．Hansen，On the radii of inscribed and escribed circles of right triangles，The math－ ematics teacher 72（6）（1979）462－464．
［4］R．Honsberger．More Mathematical Morsels，MAA， 1991.
［5］Itō（伊東隷尾）ed．，Sampō Zatsushō Senmonkai（算法雑象浅問解），Tohoku Univ．WDB， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100005302．
［6］Kokubu（国分生芽）ed．，Sampō Shōsū Shomon（算法象数初問），Tohoku Univ．WDB， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100005369．
［7］H．Okumura，A Folded Square Sangaku Problem，Mathematical Medley，40（2）（2014）21－ 23.
［8］H．Okumura，A note on Haga＇s theorems in paper folding，Forum Geom．， 14 （2014）241－ 242.
［9］H．Okumura，Incircles and excircles of right－angled triangles，Mathematical Gazette， 74 No． 469 （1990）278－279．
［10］Takeda（武田定胤）ed．，Yōdai Jikkai（容題拾解），1831，Tohoku Univ．WDB， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100007203．
［11］Yōjutsu Kugōhyō（容術矩合表），Tohoku Univ．WDB， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100007186．
Tohoku Univ．WDB is short for Tohoku University Wasan Material Database．

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

