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Abstract. Problems involving several congruent circles on a line are considered,
which yields several configurations of congruent circles on a line.

Keywords. congruent circles on a line

Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction and Preliminaries

Let α1, α2, · · · , αn be congruent circles touching a line s from the same side such
that α1 and α2 touch, and αi (i = 3, 4, · · · , n) touches αi−1 from the side opposite
to α1. We call α1, α2, · · · , αn congruent circles on a line or congruent circles on
s (see Figure 1). In this paper we consider several problems involving congruent
circles on a line and construct several configurations consisting of congruent circles
on a line. If each of α, β, γ is a line or a circle and they form a curvilinear triangle,
we denote the triangle and its incircle by T (α, β, γ) and I(α, β, γ), respectively.
If one of α, β, γ is a circle and the others are tangents of the circle parallel to
each other, I(α, β, γ) is one of the two circles congruent to the circle touching the
three (see Figure 2). We use the following propositions.

α1 α2 αn

s
Figure 1: n = 5
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I(α, β, γ)

Figure 2.

Proposition 1.1. If α and β are externally touching circles of radii a and b with
external common tangent s, the following statements hold.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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(i) If s touches the two circles at points P and Q, |PQ| = 2
√
ab.

(ii) If c is the radius of I(α, β, s), then the following relation holds:

(1)
1√
c
=

1√
a
+

1√
b
.

A sangaku problem dated 1824 in Gunma is sometimes cited for Proposition 1.1(ii)
[3], [4], but the same problem can be found in several older books [1], [9], [10],
[11], [15], [17], [18], where the original of [17] was written in 1796 [8].

Proposition 1.2. Let α, β, γ be circles of radii a, b, c, respectively. If s and t
are tangents of β parallel to each other, α touches s from the same side as β and
β externally, and γ touches t from the same side as β and α and β externally, the
following relation holds:

(2) c =
b2

4a
.

Proof. Let A and C be the centers of α and γ, respectively, and let F be the foot
of perpendicular from C to the line parallel to s passing through A (see Figure 3).

We get |AF | = |2
√
ab− 2

√
bc| by Proposition 1.1(i), also |CF | = |a− 2b+ c| and

|AC| = a+ c. Solving the equation |AF |2 + |CF |2 = |AC|2 for c, we get (2). □
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γ

Figure 3.

Proposition 1.2 can be found in [1] and [3], where the condition b > a is assumed.
But such an assumption is unnecessary.

2. Problems involving congruent circles on a line

If β1, β2, · · · , βn (n ≥ 2) are congruent circles on a line s, and a circle α touches
β1, βn and s, we denote the configuration consisting of α, β1, β2, · · · , βn and s by
A(n) (see Figure 4). If a circle α touches a line s and β1 is the remaining tangent
of α parallel to s, the configuration consisting of α, β1 and s is denoted by A(1)
(see Figure 5). We call α and s the center circle and the baseline of A(n). The
circles β1 and βn (if n ≥ 2) are called the sides of A(n). If n ≥ 2, the remaining
tangent of β1 parallel to s is called the auxiliary line of A(n).

There are several problems involving A(n) especially in the case n = 4, 5 in
Wasan geometry. For the case n = 5, a problem proposed by Shinohara (篠原善
成) dated 1809 with Figure 6 can be found in [16]. Also A(5) can be found in
several problems [7], [12], [14], [21], [22], where the problem in [7] is using a figure
arranged as in Figure 7. Problems involving A(4) can be found in [2], [6], [16],
[19], [20], [21]. Problems involving A(2) can be found in [5], [21], [22]. All the
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problems are essentially asking to find the ratio of the two different radii of the
circles forming A(n). The next theorem gives a general solution of those problems.

β1 β3β2 βn

α

s
Figure 4: A(n), n = 5

β1

α

s
Figure 5: A(1)

Figure 6. Figure 7.

α
s

β1 β2

Figure 8: A(2)

Figure 9.

Theorem 2.1 ([13]). If the center circle and the sides of A(n) (n ≥ 2) have radii
a and b, respectively, the following equation holds.

(3)
a

b
=

(
n− 1

2

)2

.



Hiroshi Okumura 27

Remark 1. If we do not distinguish similar figures, the figure satisfying (3) is
uniquely determined. Hence the converse of the theorem is also true.

Since a/b = 1/4 in A(2) (see Figure 8), and a/b = 4 in A(5), we can construct
a recursive configuration denoted by Figure 9. Figure 10 is made by using Shi-
nohara’s figure, where the horizontal parallel segments are removed (see Figure
6).

Figure 10.

Let M be the midpoint of the segment joining the centers of the sides of A(n)
(n ≥ 2) with center circle α, and let A and B be the centers of α and one of the
sides. Then |AM | : |BM | = (n+1)|n−3| : 4(n−1). Therefore ABM is a 3 : 4 : 5
triangle if and only if n = 2, 5, 7. And ABM is a 5 : 12 : 13 triangle if and only if
n = 4, 11. But there is no natural number n such that ABM is a 555 : 572 : 797
triangle.
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3. Some properties of A(n)

In this section we consider properties of A(n).

Theorem 3.1. If A(m) (m ≥ 2) has center circle α and one of the sides β, A(n)
(n ≥ 2) has center circle β and one of the sides γ, and m or n is odd, then α and
congruent circles on a line congruent to γ form

A
(
(m− 1)(n− 1)

2
+ 1

)
.

Proof. Since the ratio of the two different radii of the circles forming A(m) equals
((m− 1)/2)2 : 1, the ratio of the radii of α and γ is ((m− 1)(n− 1)/4)2 : 1. While
solving the equation ((m− 1)(n− 1)/4)2 = ((x− 1)/2)2 for positive number x, we
get x = (m− 1)(n− 1)/2 + 1. Hence the theorem is proved by Remark 1. □
Theorem 3.2. If α is the center circle of A(n) (n ≥ 1) with one of the sides
β and baseline s, I(α, β, s) is one of the sides of A(n + 2) with center circle α
baseline s.

Proof. The theorem is obvious if n = 1. Let n ≥ 2. Let a, b, c be the radii of α,
β, I(α, β, s), respectively. Then from (1) and (3) we have

c =
ab(√

a+
√
b
)2 =

a(√
a/b+ 1

)2 =
a

((n+ 1)/2)2
.

Hence the theorem follows from a/c = (((n+ 2)− 1)/2)2 by Remark 1. □
Theorem 3.3. If α is the center circle of A(n) (n ≥ 3) with one of the sides β
and auxiliary line t, I(α, β, t) is one of the sides of A(2n − 1) with center circle
β baseline t.

Proof. Let a, b, c be the radii of α, β, I(α, β, t), respectively (see Figure 11). Since
(2) and (3) hold, the theorem follows from

b

c
=

4a

b
= (n− 1)2 =

(
(2n− 1)− 1

2

)2

.

□

I(α, β, t)

β=β1

ε

β2
I(α, β2, s)

t

s

α

Figure 11.

Remark 2. If α is the center circle of A(2) with sides β = β1 and β2 and auxiliary
line t, the theorem still holds in the case n = 2 if we define I(α, β1, t) = β2.
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Theorem 3.4. If congruent circles β1, β2, · · · , βn, · · · , β2n (n ≥ 1) on a line
form A(2n) with center circle α baseline s and auxiliary line t, the followings hold.
(i) I(α, βn, s) is one of the sides of A(4n+ 3) with center circle βn baseline s.
(ii) If n ≥ 2 and ε is the circle touching α externally and s at the point of tangency
of βn and s, then the circles ε and I(α, β1, t) are congruent.

Proof. Let a, b, c be the radii of α, βn, I(α, βn, s), respectively (see Figure 11).

By Proposition 1.1(i) we have 2
√
ac+2

√
bc = b, i.e., c = b2/(2(

√
a+

√
b))2. Since√

a/b = (2n− 1)/2, the part (i) follows from

b

c
=

4(
√
a+

√
b)2

b
= 4

(√
a

b
+ 1

)2

= (2n+ 1)2 =

(
(4n+ 3)− 1

2

)2

.

If e is the radius of ε, then 2
√
ae = b. Hence (ii) follows from Proposition 1.2. □

Theorem 3.4(ii) holds in the case n = 1 if we define I(α, β1, t) as in Remark 2.

β1 β2 β2n+1

s

α

I(α, βn, s)
ε

Figure 12: n = 2

Theorem 3.5. If congruent circles β1, β2, · · · , β2n+1 (n ≥ 1) on a line form
A(2n+ 1) with center circle α baseline s, the following statements hold.
(i) I(α, βn, s) is one of the sides of A(2n+ 3) with center circle βn baseline s.
(ii) If ε is the circle touching α externally and s at the point of tangency of βn

and s, ε is a member of the congruent circles on s forming A(2n+1) with center
circle βn.

Proof. Let a, b, c be the radii of α, βn, I(α, βn, s), respectively (see Figure 12).

From 2
√
bc+ 2

√
ac = 2b, c = b2/(

√
a+

√
b)2. Since

√
a/b = n, (i) follows from

b

c
=

(√
a+

√
b
)2

b
=

(√
a

b
+ 1

)2

= (n+ 1)2 =

(
(2n+ 3)− 1

2

)2

.

If e is the radius of ε, 2
√
ae = 2b, i.e., b/e = a/b. This proves (ii). □

4. Configurations consisting of A(n)

In this section we construct configurations consisting of A(n). Let β1
1 be the line

forming A(1) with center circle α and baseline s. If congruent circles βk
1 , β

k
2 , · · · ,

βk
k on a line form A(k) with center circle α one of the sides βk

1 and baseline s
for k = 2n − 1, let βk+2

1 = I(α, βk
1 , s). Then βk+2

1 is one of the sides of A(k + 2)
with center circle α baseline s by Theorem 3.2. Hence by induction we get a
configuration consisting of A(1), A(3), A(5), · · · , A(2n − 1), · · · with common
center circle α and common baseline s. The configuration is denoted by Ao, and α
and s are also called the center circle and the baseline of Ao (see Figure 13). Since
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β1
1 , β

3
1 , β

5
1 , · · · form a chain of circles touching α and s, Ao can be constructed

from α, s and one of the circles in the chain.

Similarly starting with A(2) with center circle α and baseline s, we get a con-
figuration consisting of A(2), A(4), A(6), · · · , A(2n), · · · with common center
circle α and common baseline s. The configuration is denoted by Ae, and α and
s are also called the center circle and the baseline of Ae (see Figure 14). Circles
touching α in Ae form a chain of circles touching α and s. Therefore Ae can also
be constructed from α, s and one of the circles in the chain.

α=β3
2

β1
1

β3
1 β3

3

β5
1 β5

2 β5
3 β5

4 β5
5

s
Figure 13: Ao

β2
1 β2

2

β4
1 β4

2 β4
3 β4

4

α

s
Figure 14: Ae

5. Another configurations of congruent circles on a line

Let β1 and β2 be congruent touching circles with external common tangent s.
Let γ1, γ2, · · · , γn be congruent circles on s such that they lie in the curvilinear
triangle T (β1, β2, s), γ1 touches β1 and γn touches β2. The configuration consisting
of β1, β2, γ1, γ2, · · · , γn, and s is denoted by B(n) (see Figure 15). The two circles
β1 and β2 and the line s are called the sides and the baseline of B(n), and γ1 and
γn (if n ≥ 2) are called the inner sides of B(n). The two configurations B(1) and
A(2) are the the same. A problem involving B(5) can be found in [20].
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γ1 γ2 γn

β1 β2

s

Figure 15: B(n), n = 5

Theorem 5.1. The following statements are true for B(n).
(i) Circles of radii b and c (b > c) can form B(n) if and only if

b

c
=

(√
n+ 1

)2
.

(ii) If β1 is one of the sides of B(n2) with baseline s and γ1 is one of the the inner
sides of B(n2) touching β1, I(β1, γ1, s) is one of the inner sides of B((n+1)2) with
one of the sides β1 baseline s.

Proof. If circles of radii b and c (b > c) form B(n) with baseline s, the distance

between the points of tangency of the sides and s equals 2(n − 1)c + 4
√
bc =

2b. This gives the equation in (i). The converse holds by the uniqueness of the
figure. This proves (i). Let b and c be the radii of β1 and γ1 forming B(n2),

respectively, and let d be the radius of I(β1, γ1, s). Then d = bc/(
√
b +

√
c)2 =

b/(
√
b/c+1)2 = b/(n+2)2 by Proposition 1.1(ii) and (i). Hence (ii) is proved by

b/d =
(√

(n+ 1)2 + 1
)2

. □

β1 β2

γ1
1

γ2
1 γ2

2 γ2
3 γ2

4

s

Figure 16: B

Let us assume that a circle γ1
1 forms B(1) with sides β1 and β2 baseline s. If

congruent circles γk
1 , γ

k
2 , · · · , γk

k2 on a line form B(k2) with sides β1 and β2 baseline
s, where γk

1 touches β1, then I(β1, γ
k
1 , s) is one of the inner sides of B((k + 1)2)

with sides β1 and β2 baseline s by Theorem 5.1(ii). Hence we get a configuration
consisting of B(12), B(22), B(32), · · · with common sides β1 and β2 and common
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baseline s by induction. The configuration is denoted by B, and β1 and β2 and s
are also called the sides and the baseline of B (see Figure 16). The circles touching
β1 in B form a chain of circles touching β1 and s. Therefore B can be constructed
from β1, s and one of the circles in the chain.

Theorem 5.2. If γn
1 , γ

n
2 , · · · , γn

n2 (n = 1, 2, · · · ) are congruent circles on a line
forming B(n2) in B with baseline s, the following statements hold.
(i) If j = n(n − 1)/2 and n ≥ 2, then γn

j and γn
j+n+1 are the sides of A(n + 2)

with center circle γ1
1 baseline s.

(ii) The configurations A(2) and A(4), A(5), A(6), · · · with center circle γ1
1 base-

line s are contained in B.
(iii) Ae with center circle γ1

1 baseline s is contained in B.

Proof. Let a, b, c be the radii of γ1
1 , the sides of B, γn

1 (n ≥ 2), respectively. Since
b/a = 4 and b/c = (n+1)2, a/c = (n+2−1)2/4. Hence circles congruent to γn

1 can

form A(n+2) with center circle γ1
1 by Remark 1. While 2

√
bc+2(j−1)c+2

√
ac =

2(n+ 1)c+ 2(n(n− 1)/2− 1)c+ (n+ 1)c = (n+ 1)2c = b shows that γn
j touches

γ1
1 externally. This proves (i). The parts (ii) and (iii) follow from (i). □

h2(γ1)

h3(γ1)

γ0 γ1

h1(γ1) h1(γ2) h1(γ3)

Figure 17: hi

γ0γ−1 γ1

h(γ1)

t

Figure 18: C

Let · · · , γ−2, γ−1, γ0, γ1, γ2, · · · be congruent circles such that γi, γi+1, · · · ,
γi+k−1 form congruent circles on a line s for any integers i and k ≥ 2. The
configuration consisting of the circles and s is denoted by C∞. Let h0 be the
identity mapping. Let h1 be the homothety such that h1(γ1) = I(γ0, γ1, s) and
h1(s) = s (see Figure 17). If a homothety hk is defined, hk+1 is the homothety
such that hk+1(γ1) = I(γ0, hk(γ1), s) and hk+1(s) = s. Now the homotheties h1,
h2, · · · are defined. Let t be the remaining external common tangent of γ0 and γ1.
Figure 18 shows the configuration C = {t}∪C∞ ∪h1(C∞)∪h2(C∞) · · · . Obviously
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the circles contained in T (γi, γi+1, s) in C form B with sides γi and γi+1 baseline
s. By Theorems 3.2 and 5.1(ii) we get the next theorem.

Theorem 5.3. The following circles are contained in hk(C∞) for any integer i for
the configuration C.
(i) The sides of A(2k + 3) with center circle γi baseline s for k ≥ 0.
(ii) The inner sides of B(k2) with sides γi and γi+1 baseline s for k ≥ 1.
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References
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