Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 1 (2017), pp. 13-15.
Received February 15, 2017. Published on-line March 6, 2017. web: http://www.sangaku-journal.eu/
©The Author(s) This article is published with open access ${ }^{1}$.

Solution to 2017-1 Problem 1

Francisco Javier García Capitán
I.E.S. Álvarez Cubero,
Avenida Presidente Alcalá Zamora, s/n.
Priego de Córdoba, Spain
e-mail: garciacapitan@gmail.com

Abstract. We give a construction of the figure in 2017-1 Problem 1 and give a general relationship of the radii of the circles in the diagram.

Keywords. sangaku problem.
Mathematics Subject Classification (2010). 51M04, 51M15.
Problem 1. See Figure 1, where the three small circles seems to be congruent.

Figure 1. Proposed problem with no text.
We suppose that the large circles have radius R and are centered at A, A^{\prime} such that $A A^{\prime}=2 a$. The radius of the three small circles is then

$$
\begin{equation*}
r=R-a \tag{1}
\end{equation*}
$$

(See Figure 2). First we find r in terms of R.
We assume that the line $A A^{\prime}$ meets one of the large circles in points C and E, where C does not lie on any small circle, O is the midpoint of $A A^{\prime}, B$ is one of the points of intersection of the two large circles, and T is the point of tangency

[^0]

Figure 2. Solution.
of $B C$ and one of the small circles. Since $O B^{2}=O C \cdot O E=r(2 R-r)$, and the triangles $T D C$ and $O B C$ are similar,

$$
\begin{equation*}
\frac{T D}{D C}=\frac{O B}{B C} \Rightarrow \frac{r}{2 R-3 r}=\frac{\sqrt{r(2 R-r)}}{\sqrt{r(2 R-r)+(2 R-r)^{2}}}=\sqrt{\frac{r}{2 R}} \tag{2}
\end{equation*}
$$

giving the relation

$$
9 r^{2}-14 r R+4 R^{2}=0
$$

from which we get r in terms of R (we look for $r<R$):

$$
\begin{equation*}
r=\frac{7-\sqrt{13}}{9} R . \tag{3}
\end{equation*}
$$

Eliminating r from (1) and (3), we get $R=(\sqrt{13}-2) a$.

Figure 3. Construction.
Construction. Now we assume that a segment $A A^{\prime}=2 a$ with midpoint O is given. We erect a perpendicular $O F$ to $O A$ equal to $\frac{3}{2} O A$ (see Figure 3). Now we find a point G on segment $F A$ such that $F G=O A$ and the reflection H of A in . Then $A H=(\sqrt{13}-2) a$ holds. Let $R=A H$. We construct the circles (A, R) and $\left(A^{\prime}, R\right)$, and the remaining parts of the figure.
Generalization. We can generalize Problem 1 by considering m circles between the two large circles and n small circles on each side.
Figure 4 shows the cases $m=2, n=3$ (left) and $m=3, n=2$ (right).

In this case (2) becomes

$$
\frac{r}{2 R-(2 m+2 n-1) r}=\frac{\sqrt{m r(2 R-m r)}}{\sqrt{m r(2 R-m r)+(2 R-m r)^{2}}}=\sqrt{\frac{m r}{2 R}} .
$$

The last equation yields

$$
4 m R^{2}-2\left(4 m^{2}+4 m n-2 m+1\right) r R+m(2 m+2 n-1)^{2} r^{2}=0
$$

which gives

$$
R=\frac{t_{m, n}+\sqrt{2 t_{m, n}-1}}{4 m} r,
$$

where $t_{m, n}=2 m(2 m+2 n-1)+1$.

Figure 4. Generalization.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

