Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 2 (2018) pp. 17-21
Received 10 June 2018. Published on-line 20 June 2018
web: http://www.sangaku-journal.eu/
© The Author(s) This article is published with open access ${ }^{1}$.

Solution to 2017-3 Problem 5

Hiroshi Okumura
Takahanadai Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. 2017-3 Problem 5 is generalized.
Keywords. congruent circles on a line
Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction

For a triangle $E F G$, let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}$ be circles of radius r such that they touch the side $E F$ from the inside of $E F G, \gamma_{1}$ and γ_{2} touch, $\gamma_{i}(i=3,4, \cdots, n)$ touches γ_{i-1} from the side opposite to γ_{1}, γ_{1} touches the side $G E, \gamma_{n}$ touches the sides $F G$ (see Figure 1). In this case we say that $E F G$ has n circles of radius r on $E F$ [1]. Those are a variety of circles called congruent circles on a line [2]. In this paper we generalize the following problem (see Figure 2).
Problem 1 (2017-3 Problem 5). Let $A B C D$ be a rectangle with center O and circumcircle γ of radius s. A circle of radius r touches the side $B C$ and the minor arc of γ cut by $B C$ at each of the midpoints. If $O A B$ has two circles of radius r on $A B$, find s / r.

Figure 1.

Figure 2.

[^0]
2. Generalization

Notice that $E F G$ has n circles of radius r on $E F$ if and only if

$$
|E F|=2(n-1) r+r \cot (\angle G E F / 2)+r \cot (\angle G F E / 2) .
$$

Figure 3: $n=3$

Theorem 1. Let $A B C$ be a right triangle with hypotenuse $C A$ and circumcircle γ of radius s center O. Assume that a circle of radius r^{\prime} touches $B C$ and the minor arc $B C$ of γ at each of the midpoints, $O A B$ has n circles of radius r on $A B$, and $t=\cot (\angle A B O / 2)$. Then $r=r^{\prime}$ if and only if

$$
\begin{equation*}
t=\frac{1}{2}(1+\sqrt{4 n+1}) \tag{1}
\end{equation*}
$$

Proof. Let $a=|B C| / 2, c=|A B| / 2$ (see Figure 3). Obviously we have

$$
\begin{equation*}
s=c+2 r^{\prime} . \tag{2}
\end{equation*}
$$

From $\tan (\angle A B O)=a / c$, we get $t=\left(c+\sqrt{a^{2}+c^{2}}\right) / a=(c+s) / a$, i.e.,

$$
\begin{equation*}
a t=c+s . \tag{3}
\end{equation*}
$$

The power of the midpoint of $B C$ with respect to the circle γ equals

$$
\begin{equation*}
2 r^{\prime}(c+s)=a^{2} \tag{4}
\end{equation*}
$$

Since $O A B$ has n circles of radius r on $A B$, we have

$$
\begin{equation*}
c=(n-1) r+r t \tag{5}
\end{equation*}
$$

Then eliminating a, c, s from (2), (3), (4), (5), we get

$$
\frac{r^{\prime}}{r}=\frac{1}{t+1}+\frac{n}{t^{2}-1}
$$

This implies

$$
1-\frac{r^{\prime}}{r}=\frac{1}{t^{2}-1}\left(t-\frac{1+\sqrt{4 n+1}}{2}\right)\left(t-\frac{1-\sqrt{4 n+1}}{2}\right) .
$$

Therefore $r^{\prime}=r$ and (1) are equivalent, since $t>1$.

If $r=r^{\prime}$ in the theorem, we denote the figure by $\mathcal{S}(n)$. Theorem 1 shows that the configuration $\mathcal{S}(n)$ can be constructed uniquely for a positive integer n. Problem 1 asks to find s / r for $\mathcal{S}(2)$. The notations for $\mathcal{S}(n)$ used in Theorem 1 will be used throughout this paper.
From (1), (2), (5), we get the following corollary, which is a generalization of Problem 1:

Corollary 1. The following relation holds for $\mathcal{S}(n)$.

$$
\begin{equation*}
\frac{s}{r}=n+1+\frac{1}{2}(1+\sqrt{4 n+1}) . \tag{6}
\end{equation*}
$$

Also (3) and (4) yield $a=2 r^{\prime} t$. Hence we have the following relation for $\mathcal{S}(n)$:

$$
\begin{equation*}
a=2 r t . \tag{7}
\end{equation*}
$$

The equation (1) shows that t equals the golden number $(1+\sqrt{5}) / 2$ for $\mathcal{S}(1)$. Therefore the incenter of the triangle $O A B$, the foot of perpendicular from the incenter to $B C$, the point B, and the midpoint of $A B$ are the vertices of a golden rectangle for $\mathcal{S}(1)$ (see Figure 4).

Figure 4: $\mathcal{S}(1)$
Since $s / r=n+1+t$ by (1) and (6) for $\mathcal{S}(n), s / r$ is an integer if and only if t is an integer for $\mathcal{S}(n)$.

Corollary 2. For $\mathcal{S}(n), s / r$ is an integer if and only if there is a positive integer k such that $n=k(k+1)$. In this event $t=k+1$ and $s / r=(k+1)^{2}+1$.

Proof. s / r is an integer if and only if $4 n+1$ is a square of an odd integer by (6). This is equivalent to $4 n+1=(2 k+1)^{2}$ for some positive integer k. In this event $n=k(k+1)$. The rest of the corollary follows from (1) and (6).

Notice that Problem 1 is the case $k=1$. Figures 5, 6 show the cases $k=2,3$.

Figure 5: $\mathcal{S}(6), k=2, s=10 r$

Figure 6: $\mathcal{S}(12), k=3, s=17 r$

3. Special case

We have $|B C| /|A B|=4 / 3$ for $\mathcal{S}(2)$ by (1), (5) and (7), while $|B C| /|A B|=3 / 4$ for $\mathcal{S}(6)$. Hence the right triangles $A B C$ in $\mathcal{S}(2)$ and $\mathcal{S}(6)$ are 3-4-5 triangles. Therefore $\mathcal{S}(2)$ and $\mathcal{S}(6)$ can be constructed from the same triangle (see Figure 7). Then there arises a problem to determine all the such right triangles each of which derives $\mathcal{S}(n)$ and $\mathcal{S}(m)$ for some positive integers n and m. However we show that there is no other such triangles except the one just mentioned.

Figure 7: $\mathcal{S}(2)$ and $\mathcal{S}(6)$

Theorem 2. $\mathcal{S}(2)$ and $\mathcal{S}(6)$ are only the pair which can be derived from the same right triangle.

Proof. For $\mathcal{S}(n)$, let us assume that a circle of radius r^{\prime} touches $A B$ and the minor arc $A B$ of γ at the midpoints, $O B C$ has m circles of radius r^{\prime} on $B C$, and $t^{\prime}=\cot (\angle B C O / 2)$. Then we have (1) and

$$
\begin{equation*}
t^{\prime}=\frac{1}{2}(1+\sqrt{4 m+1}) \tag{8}
\end{equation*}
$$

by Theorem 1. Since $(\angle A B O) / 2+(\angle B C O) / 2=45^{\circ},(t-1)\left(t^{\prime}-1\right)=2$ holds. Substituting (1) and (8) in the last equation and rearranging, we have

$$
\begin{equation*}
m^{2} n^{2}-10 m n-4(m+n)+8=0 \tag{9}
\end{equation*}
$$

The positive integer solutions of (9) are $(n, m)=(2,6),(6,2)$ for $n \leq 13$. Let us assume $n>13$. Solving (9) for m we get

$$
m=\frac{5 n+2 \pm(n+2) \sqrt{4 n+1}}{n^{2}}
$$

However $(5 n+2)^{2}-((n+2) \sqrt{4 n+1})^{2}=-4(n-2) n^{2}<0$. Therefore we get

$$
m=m(n)=\frac{5 n+2+(n+2) \sqrt{4 n+1}}{n^{2}}
$$

Then $m(n)$ is a monotonically decreasing function of n, and $m(14)<1$. Therefore (9) has no positive integer solutions for $n>13$.

4. Open problem

If we divide each of the isosceles triangles $O A B$ and $O B C$ in $\mathcal{S}(2)$ by the perpendicular bisectors of $A B$ and $B C$, we get four congruent 3-4-5 triangles. Therefore if $O A B$ has two circles of radius r on $A B, O B C$ has also two circles of radius r on $B C$ (see Figure 8). In general if $O A B$ has n circles of radius r on $A B$ in $\mathcal{S}(n)$ and $O B C$ has m circles of radius r on $B C$, we denote the figure by $\mathcal{S}(n, m)$. Now we can say that $\mathcal{S}(2,2)$ exists.
For $\mathcal{S}(6)$, let us assume that $A B$ has 6 circles of radius r on $A B$. Then $t=3$ by (1). Hence $t^{\prime}=\cot (\angle B C O / 2)=1+2 /(t-1)=2$ and $|B C| / 2=2 r t=6 r=$ $(5-1) r+r t^{\prime}$ by (7). Therefore $O B C$ has 5 circles of radius r on $B C$, i.e., $\mathcal{S}(6,5)$ exists (see Figure 9). However the problem to determine all the existing $\mathcal{S}(n, m)$ remains unsolved. Notice that both $\mathcal{S}(2,2)$ and $\mathcal{S}(6,5)$ are also made from 3-4-5 triangles.

Figure 8: $\mathcal{S}(2,2)$

Figure 9: $\mathcal{S}(6,5)$

References

[1] H. Okumura, A note on an isosceles triangle containing a square and three congruent circles, Sangaku J. Math., 1 (2017) 24-34.
[2] H. Okumura, Configurations of congruent circles on a line, Sangaku J. Math., 1 (2017) 24-34.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

