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1. Introduction

For a triangle EFG, let γ1, γ2, · · · , γn be circles of radius r such that they touch
the side EF from the inside of EFG, γ1 and γ2 touch, γi (i = 3, 4, · · · , n) touches
γi−1 from the side opposite to γ1, γ1 touches the side GE, γn touches the sides
FG (see Figure 1). In this case we say that EFG has n circles of radius r on EF
[1]. Those are a variety of circles called congruent circles on a line [2]. In this
paper we generalize the following problem (see Figure 2).

Problem 1 (2017-3 Problem 5). Let ABCD be a rectangle with center O and
circumcircle γ of radius s. A circle of radius r touches the side BC and the minor
arc of γ cut by BC at each of the midpoints. If OAB has two circles of radius r
on AB, find s/r.
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1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. Generalization

Notice that EFG has n circles of radius r on EF if and only if

|EF | = 2(n− 1)r + r cot(∠GEF/2) + r cot(∠GFE/2).
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Figure 3: n = 3

Theorem 1. Let ABC be a right triangle with hypotenuse CA and circumcircle γ
of radius s center O. Assume that a circle of radius r′ touches BC and the minor
arc BC of γ at each of the midpoints, OAB has n circles of radius r on AB, and
t = cot(∠ABO/2). Then r = r′ if and only if

(1) t =
1

2

(
1 +

√
4n+ 1

)
.

Proof. Let a = |BC|/2, c = |AB|/2 (see Figure 3). Obviously we have

(2) s = c+ 2r′.

From tan(∠ABO) = a/c, we get t =
(
c+

√
a2 + c2

)
/a = (c+ s)/a, i.e.,

(3) at = c+ s.

The power of the midpoint of BC with respect to the circle γ equals

(4) 2r′(c+ s) = a2.

Since OAB has n circles of radius r on AB, we have

(5) c = (n− 1)r + rt.

Then eliminating a, c, s from (2), (3), (4), (5), we get

r′

r
=

1

t+ 1
+

n

t2 − 1
.

This implies

1− r′

r
=

1

t2 − 1

(
t− 1 +

√
4n+ 1

2

)(
t− 1−

√
4n+ 1

2

)
.

Therefore r′ = r and (1) are equivalent, since t > 1. □
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If r = r′ in the theorem, we denote the figure by S(n). Theorem 1 shows that the
configuration S(n) can be constructed uniquely for a positive integer n. Problem
1 asks to find s/r for S(2). The notations for S(n) used in Theorem 1 will be
used throughout this paper.

From (1), (2), (5), we get the following corollary, which is a generalization of
Problem 1:

Corollary 1. The following relation holds for S(n).

(6)
s

r
= n+ 1 +

1

2

(
1 +

√
4n+ 1

)
.

Also (3) and (4) yield a = 2r′t. Hence we have the following relation for S(n):

(7) a = 2rt.

The equation (1) shows that t equals the golden number
(
1 +

√
5
)
/2 for S(1).

Therefore the incenter of the triangle OAB, the foot of perpendicular from the
incenter to BC, the point B, and the midpoint of AB are the vertices of a golden
rectangle for S(1) (see Figure 4).
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Figure 4: S(1)

Since s/r = n+ 1 + t by (1) and (6) for S(n), s/r is an integer if and only if t is
an integer for S(n).

Corollary 2. For S(n), s/r is an integer if and only if there is a positive integer
k such that n = k(k + 1). In this event t = k + 1 and s/r = (k + 1)2 + 1.

Proof. s/r is an integer if and only if 4n+ 1 is a square of an odd integer by (6).
This is equivalent to 4n+ 1 = (2k + 1)2 for some positive integer k. In this event
n = k(k + 1). The rest of the corollary follows from (1) and (6). □

Notice that Problem 1 is the case k = 1. Figures 5, 6 show the cases k = 2, 3.
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Figure 5: S(6), k = 2, s = 10r
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Figure 6: S(12), k = 3, s = 17r
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3. Special case

We have |BC|/|AB| = 4/3 for S(2) by (1), (5) and (7), while |BC|/|AB| = 3/4
for S(6). Hence the right triangles ABC in S(2) and S(6) are 3-4-5 triangles.
Therefore S(2) and S(6) can be constructed from the same triangle (see Figure
7). Then there arises a problem to determine all the such right triangles each of
which derives S(n) and S(m) for some positive integers n and m. However we
show that there is no other such triangles except the one just mentioned.

Figure 7: S(2) and S(6)

Theorem 2. S(2) and S(6) are only the pair which can be derived from the same
right triangle.

Proof. For S(n), let us assume that a circle of radius r′ touches AB and the
minor arc AB of γ at the midpoints, OBC has m circles of radius r′ on BC, and
t′ = cot(∠BCO/2). Then we have (1) and

(8) t′ =
1

2
(1 +

√
4m+ 1)

by Theorem 1. Since (∠ABO)/2 + (∠BCO)/2 = 45◦, (t − 1)(t′ − 1) = 2 holds.
Substituting (1) and (8) in the last equation and rearranging, we have

(9) m2n2 − 10mn− 4(m+ n) + 8 = 0.

The positive integer solutions of (9) are (n,m) = (2, 6), (6, 2) for n ≤ 13. Let us
assume n > 13. Solving (9) for m we get

m =
5n+ 2± (n+ 2)

√
4n+ 1

n2
.

However (5n+ 2)2 −
(
(n+ 2)

√
4n+ 1

)2
= −4(n− 2)n2 < 0. Therefore we get

m = m(n) =
5n+ 2 + (n+ 2)

√
4n+ 1

n2
.

Then m(n) is a monotonically decreasing function of n, and m(14) < 1. Therefore
(9) has no positive integer solutions for n > 13. □
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4. Open problem

If we divide each of the isosceles triangles OAB and OBC in S(2) by the perpen-
dicular bisectors of AB and BC, we get four congruent 3-4-5 triangles. Therefore
if OAB has two circles of radius r on AB, OBC has also two circles of radius r
on BC (see Figure 8). In general if OAB has n circles of radius r on AB in S(n)
and OBC has m circles of radius r on BC, we denote the figure by S(n,m). Now
we can say that S(2, 2) exists.
For S(6), let us assume that AB has 6 circles of radius r on AB. Then t = 3 by
(1). Hence t′ = cot(∠BCO/2) = 1 + 2/(t − 1) = 2 and |BC|/2 = 2rt = 6r =
(5− 1)r+ rt′ by (7). Therefore OBC has 5 circles of radius r on BC, i.e., S(6, 5)
exists (see Figure 9). However the problem to determine all the existing S(n,m)
remains unsolved. Notice that both S(2, 2) and S(6, 5) are also made from 3-4-5
triangles.
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Figure 8: S(2, 2)
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Figure 9: S(6, 5)
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