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1. Introduction

For a triangle EFG, let γ1, γ2, · · · , γn be circles of radius r such that they touch
the side EF from the inside of EFG, γ1 and γ2 touch, γi (i = 3, 4, · · · , n) touches
γi−1 from the side opposite to γ1, γ1 touches the side GE, γn touches the sides
FG. In this case we say that EFG has n circles of radius r on EF . Those are a
variety of circles called congruent circles on a line [3]. We consider the following
configuration involving congruent circles on a line: Let ABC be a right triangle
with hypotenuse CA and circumcircle γ with center O. Assume that a circle of
radius r touches the side BC and the minor arc BC of γ at each of the midpoints,
OAB has n circles of radius r on AB. This figure is denoted by S(n). In this case
if OBC has also m circles of radius r on BC, we denote the figure by S(n,m).
It is shown that S(2, 2) and S(6, 5) exist (see Figures 1 and 2), and the problem
to determine all the existing S(n,m) is proposed in [1]. In this note we give a
solution to this problem.
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Figure 2: S(6, 5)
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2. Result

Notice that EFG has n circles of radius r on EF if and only if

|EF | = 2(n− 1)r + r cot(∠GEF/2) + r cot(∠GFE/2).

Let t = cot(∠ABO/2) for S(n). We use the following relation, which shows that
S(n) is determined uniquely by n [1]:

(1) t =
1

2
(
√
4n+ 1 + 1).
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Figure 3: S(n,m)

Theorem 1. The configuration S(n,m) exists if and only if (n,m) = (2, 2), (6, 5).

Proof. We assume that S(n,m) exists for some integers n and m. It is sufficient
to show (n,m) = (2, 2), (6, 5). Let a = |BC|/2, c = |AB|/2, s = |BO|, t′ =
cot(∠BCO/2) (see Figure 3). Obviously we have

(2) s = c+ 2r.

From tan(∠ABO) = a/c, we get t =
(
c+

√
a2 + c2

)
/a = (c+ s)/a, i.e.,

(3) at = c+ s.

The power of the midpoint of BC with respect to the circle γ equals

(4) 2r(c+ s) = a2.

Since OBC has m circles of radius r on BC, we have

(5) a = (m− 1)r + rt′.

Since ∠ABO/2 + ∠BCO/2 = 45◦, we have

(6) (t− 1)(t′ − 1) = 2.

Then eliminating a, c, s, t′ from (2), (3), (4), (5), (6), we get

(7) 2t2 − (m+ 2)t+m− 2 = 0.

Substituting (1) in (7), and solving the resulting equation for m, we get

(8) m =
1

n
(n− 1)(

√
4n+ 1 + 1).

Since n and n − 1 are related to prime numbers, (8) shows that
√
4n+ 1 + 1 is

a multiple of n, i.e.,
√
4n+ 1 is an integer. Therefore 4n + 1 = (2k + 1)2 for a

positive integer k. Then we get n = k(k + 1) and

m = 2k + 2− 2

k
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by (8). This implies that 2/k is an integer. Therefore k = 1, 2, i.e., (n,m) =
(2, 2), (6, 5). The proof is now complete. □

3. Characterizations of 3-4-5 triangles

As noted in [1], S(2) and S(6) are only the pair which can be derived from the
same triangle, where the triangle is a 3-4-5 triangle (see Figure 4). Hence the
right triangles in S(2, 2) and S(6, 5) are also 3-4-5 triangles.

Figure 4: S(2) and S(6)

Therefore we get a characterization of the 3-4-5 triangle by Theorem 1: a right
triangle is a 3-4-5 triangle if and only if it satisfies one of the followings:
(i) S(n) and S(m) are derived from the triangle for some distinct integers n and
m.
(ii) S(2) or S(6) is derived from the triangle.
(iii) S(n,m) is derived from the triangle for some integers n and m.
(iv) S(2, 2) or S(6, 5) is derived from the triangle.

For another configuration involving congruent circles on a line and 3-4-5 triangles
see [2].
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