Sangaku Journal of Mathematics (SJM) ©CSJM
ISSN 2534-9562
Volume 2 (2018), pp.54-56
Received 1 October 2018. Published on-line 4 October 2018
web: http://www.sangaku-journal.eu/
© The Author(s) This article is published with open access ${ }^{1}$.

Solution to Problem 2018-3-2

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. A generalization of Problem 2018-3-2 in [5] is given.
Keywords. congruent circles on a line
Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction

We give a solution to Problems 2018-3 Problem 2 by giving a generalization of the problem [5]. The problem is as follows (see Figure 1):
Problem 1. For two intersecting circles δ_{1} and δ_{2} of radius 6 , there are four congruent smaller circles such that two of them touch each other and δ_{1} and δ_{2} internally, each of the other two circles touches δ_{1} and δ_{2} externally and one of the external common tangents of δ_{1} and δ_{2}. Find the radius of the smaller circles.

Figure 1.
The same problem can also be found in $[6,7,8,9]$, which are not referred in [5].

[^0]
2. GEnERALIZATION

We generalize the problem. Let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}$ be congruent circles of radius r touching a line t from the same side such that γ_{1} and γ_{2} touch and γ_{i} touches γ_{i-1} at the farthest point on γ_{i-1} from γ_{1} for $i=3,4, \cdots, n$. In this case we call γ_{1}, $\gamma_{2}, \cdots, \gamma_{n}$ congruent circles on a line or congruent circles of radius r on t (see Figure 2).

Figure 2.
The problem is generalized as follows (see Figure 3).

Figure 3: $n=4$

Figure 4: $n=3$

Theorem 1. For a rectangle $A B C D$ satisfying $s=|B C|>|A B|$, let δ be the circle with center B passing through C. If $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}$ are congruent circles of radius r on $D A$ such that γ_{1} touches the side $C D$ from the same side as A and γ_{n} touches δ externally from the side opposite to A, and $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \cdots, \gamma_{n}^{\prime}$ are congruent circles of radius r on $D A$ such that γ_{1}^{\prime} touches δ internally from the side opposite to D and γ_{n}^{\prime} touches the side $A B$ from the same side as D, then the following statements hold.
(i) $s=2(2 n+1) r$.
(ii) There is a circle of radius r touching $D A$ and γ_{n} and γ_{1}^{\prime} externally.

Proof. We assume that P and Q are the centers of γ_{n} and γ_{1}^{\prime}, respectively, and T is the point of tangency of γ_{n}^{\prime} and $A B$ (see Figure 4). From the right triangles $B P T$ and $B Q T$, we get

$$
\begin{equation*}
(s+r)^{2}-(s-(2 n-1) r)^{2}=(s-r)^{2}-((2 n-1) r)^{2} \tag{1}
\end{equation*}
$$

Solving the equation for s, we get (i). The part (ii) follows from (i).
Drawing Figure 4 with its images by the reflections in the lines $A B$ and $P Q$ and removing several line segments from the resulting figure, we get Figure 5. Therefore Theorem 1 is a generalization of Problem 1, which is the case $n=1$. If γ is the circle in (ii), the fact shows that the $2 n+1$ circles $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}, \gamma, \gamma_{1}^{\prime}$,
$\gamma_{2}^{\prime}, \cdots, \gamma_{n}^{\prime}$ form congruent circles of radius r on $D A$ ．Since $|B T|^{2}$ equals the both sides of（1），we have $|B T|=2 \sqrt{3 n(n+1)} r$ ．

Figure 5.
Let us assume that a positive integer n and a positive real number r are given．For a rectangle $A B C D$ satisfying $|A B|=(2 \sqrt{3 n(n+1)}+1) r$ and $|D A|=2(2 n+1) r$ ， let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 n+1}$ be congruent circles of radius r on $D A$ ，such that γ_{1} touches the side $C D$ from the same side as A and $\gamma_{2 n+1}$ touches the side $A B$ from the same side as D ．Then the circle with center B passing through C touches the circles γ_{n} externally and γ_{n+2} internally by the uniqueness of the figure．
For more properties on congruent circles on a line，see $[1,2,3,4]$ ．

References

［1］H，Okumura，A note on an isosceles triangle containing a square and three congruent circles， Sangaku J．Math．， 2 （2018）8－10．
［2］H，Okumura，A note on a problem involving a square in a curvilinear triangle，Sangaku J． Math．， 2 （2018）3－5．
［3］H，Okumura，Theorems on two congruent circles on a line，Sangaku J．Math．， 1 （2017） 35－38．
［4］H，Okumura，Configurations of congruent circles on a line，Sangaku J．Math．， 1 （2017） 24－34．
［5］Problems 2018－3，Sangaku J．Math．， 2 （2018）41－42．
［6］Toyoyoshi（豊由周齋），Tenzan（點竄），Digital Library，Department of Mathematics，Kyoto University，http：／／edb．math．kyoto－u．ac．jp／wasan／159
［7］Sampō Taisei（算法大成），Tohoku University Wasan Material Database， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100005469
［8］Sampō Tengenjutsu Ruishū（算法天元術類集），Tohoku University Wasan Material Database， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100005531
［9］Tenzan Kaitei（点竄階梯），Tohoku University Wasan Material Database， http：／／www．i－repository．net／il／meta＿pub／G0000398wasan＿4100006710．

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

