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Abstract. A generalization of Problem 2018-3-2 in [5] is given.
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1. Introduction

We give a solution to Problems 2018-3 Problem 2 by giving a generalization of
the problem [5]. The problem is as follows (see Figure 1):

Problem 1. For two intersecting circles δ1 and δ2 of radius 6, there are four
congruent smaller circles such that two of them touch each other and δ1 and δ2
internally, each of the other two circles touches δ1 and δ2 externally and one of
the external common tangents of δ1 and δ2. Find the radius of the smaller circles.
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Figure 1.

The same problem can also be found in [6, 7, 8, 9], which are not referred in [5].

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. Generalization

We generalize the problem. Let γ1, γ2, · · · , γn be congruent circles of radius r
touching a line t from the same side such that γ1 and γ2 touch and γi touches γi−1

at the farthest point on γi−1 from γ1 for i = 3, 4, · · · , n. In this case we call γ1,
γ2, · · · , γn congruent circles on a line or congruent circles of radius r on t (see
Figure 2).

t

γ1 γnγ2

Figure 2.

The problem is generalized as follows (see Figure 3).
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Figure 3: n = 4
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Figure 4: n = 3

Theorem 1. For a rectangle ABCD satisfying s = |BC| > |AB|, let δ be the
circle with center B passing through C. If γ1, γ2, · · · , γn are congruent circles of
radius r on DA such that γ1 touches the side CD from the same side as A and γn
touches δ externally from the side opposite to A, and γ′

1, γ
′
2, · · · , γ′

n are congruent
circles of radius r on DA such that γ′

1 touches δ internally from the side opposite
to D and γ′

n touches the side AB from the same side as D, then the following
statements hold.
(i) s = 2(2n+ 1)r.
(ii) There is a circle of radius r touching DA and γn and γ′

1 externally.

Proof. We assume that P and Q are the centers of γn and γ′
1, respectively, and

T is the point of tangency of γ′
n and AB (see Figure 4). From the right triangles

BPT and BQT , we get

(1) (s+ r)2 − (s− (2n− 1)r)2 = (s− r)2 − ((2n− 1)r)2.

Solving the equation for s, we get (i). The part (ii) follows from (i). □

Drawing Figure 4 with its images by the reflections in the lines AB and PQ
and removing several line segments from the resulting figure, we get Figure 5.
Therefore Theorem 1 is a generalization of Problem 1, which is the case n = 1. If
γ is the circle in (ii), the fact shows that the 2n + 1 circles γ1, γ2, · · · , γn, γ, γ′

1,
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γ′
2, · · · , γ′

n form congruent circles of radius r on DA. Since |BT |2 equals the both
sides of (1), we have |BT | = 2

√
3n(n+ 1)r.

Figure 5.

Let us assume that a positive integer n and a positive real number r are given. For
a rectangle ABCD satisfying |AB| = (2

√
3n(n+ 1)+1)r and |DA| = 2(2n+1)r,

let γ1, γ2, · · · , γ2n+1 be congruent circles of radius r on DA, such that γ1 touches
the side CD from the same side as A and γ2n+1 touches the side AB from the
same side as D. Then the circle with center B passing through C touches the
circles γn externally and γn+2 internally by the uniqueness of the figure.

For more properties on congruent circles on a line, see [1, 2, 3, 4].
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