Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 3 (2019), pp. 106-118
Received 30 September 2019. Published on-line 2 November 2019
web: http://www.sangaku-journal.eu/
© The Author(s) This article is published with open access ${ }^{1}$.

More Relationships Between Six Circles

Stanley Rabinowitz
545 Elm St Unit 1, Milford, New Hampshire 03055, USA
e-mail: stan.rabinowitz@comcast.net
web: http://www.StanleyRabinowitz.com/

Abstract

If P is a point inside $\triangle A B C$, then the cevians through P divide $\triangle A B C$ into smaller triangles of various sizes. We give theorems about the relationships between the radii of various circles associated with these triangles.

Keywords. triangle geometry, incircles, cevians, cevasix configuration.
Mathematics Subject Classification (2010). 51M04.

1. Introduction

Wasan Geometers would often study a configuration consisting of a number of triangles and then inscribe circles in some or all of these triangles. They would then look for a relationship between the radii of these circles.
For example, one such configuration consists of a quadrilateral inscribed in a circle with the diagonals drawn, as shown in Figure 1.

Figure 1.

[^0]A well-known sangaku written on a wooden tablet in 1800 in the Yamagata prefecture asked for the relationship between the circles inscribed in triangles $A B C$, $B C D, C D A$, and $D A B$. See [3], [4, p. 43], and [9].
Using the same configuration, a tablet in 1793 in the Fukusima prefecture asked for the relationship between the radius of the original circle and the circles inscribed in the triangles $A B E, B C E, C D E$, and $D E A$. See [1], [4, p. 45], and [6].
In this paper, we will do the same thing for a different configuration (shown in Figure 2). Let P be any point inside a triangle $A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles. Relationships between the radii of the circles inscribed in triangles $A P F, B P F, B P D, C P D, C P E$, and $A P E$ were found in [8]. We will describe other sets of six circles associated with this configuration. Then we will find relationships between the radii of these six circles.

If X and Y are points, then we use the notation $X Y$ to denote either the line segment joining X and Y or the length of that line segment, depending on the context. The notation [XYZ] denotes the area of $\triangle X Y Z$. The notation $O(r)$ denotes the circle with center O and radius r.

2. Side Triangles

Let P be any point inside $\triangle A B C$ and let $A D, B E, C F$ be the cevians through P. The cevians divide the sides of $\triangle A B C$ into six segments numbered from 1 to 6 as shown in Figure 2.

Figure 2. segment numbering
Let triangle T_{i} be the triangle with one side being the segment numbered i and opposite vertex the vertex of $\triangle A B C$ opposite this side. The six triangles are shown in Figure 3. These triangles will be called "side triangles" of $\triangle A B C$.

Theorem 2.1. Let H be the orthocenter of $\triangle A B C$ and suppose H lies inside $\triangle A B C$. The altitudes through H form six triangles with the sides of $\triangle A B C$ named T_{1} through T_{6} as shown in Figure 3. Let r_{i} be the radius of the circle inscribed in triangle T_{i}. Then

$$
r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6} .
$$

Figure 3. triangle numbering

Figure 4. $\triangle A B D \sim \triangle C B F$
Proof. Note that $\triangle A B D$ is similar to $\triangle C B F$. Thus, the figure consisting of T_{1} and its incircle is similar to the figure consisting of T_{6} and its incircle (Figure 4). Corresponding parts of similar figures are in proportion, so $r_{1} / r_{6}=A B / B C$. Similarly, $r_{3} / r_{2}=B C / C A$ and $r_{5} / r_{4}=C A / A B$. Therefore,

$$
\frac{r_{1} r_{3} r_{5}}{r_{2} r_{4} r_{6}}=\frac{r_{1}}{r_{6}} \cdot \frac{r_{3}}{r_{2}} \cdot \frac{r_{5}}{r_{4}}=\frac{A B}{B C} \cdot \frac{B C}{C A} \cdot \frac{C A}{A B}=1
$$

and the result follows.
Theorem 2.2. Let M be the centroid of $\triangle A B C$. The medians through M form six triangles with the sides of $\triangle A B C$ named T_{1} through T_{6} as shown in Figure 3. Let r_{i} be the radius of the circle inscribed in triangle T_{i}. Then

$$
\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{5}}=\frac{1}{r_{2}}+\frac{1}{r_{4}}+\frac{1}{r_{6}} .
$$

Proof. Let K_{i} be the area of T_{i} and let K be the area of $\triangle A B C$. Since a median divides a triangle into two smaller triangles of equal area,

$$
K_{1}=K_{2}=K_{3}=K_{4}=K_{5}=K_{6}=K / 2 .
$$

Let s_{i} be the semiperimeter of T_{i}. The formula for the incircle of a triangle is K / s where K is the area of the triangle and s is its semiperimeter. Calculating the
sum on the left side gives

$$
\begin{aligned}
\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{5}} & =\frac{A B+B D+A D}{K}+\frac{B C+C E+B E}{K}+\frac{C A+A F+C F}{K} \\
& =\frac{(A B+B C+C A)+(B D+C E+A F)+(A D+B E+C F)}{K} \\
& =\frac{\frac{3}{2}(A B+B C+C A)+(A D+B E+C F)}{K}
\end{aligned}
$$

since $B D=A B / 2$, etc. Calculating the sum on the right side,

$$
\frac{1}{r_{2}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}
$$

gives the same result, so the two sums are equal.
Suppose the excircles of $\triangle A B C$ touch the sides $B C, C A$, and $A B$ at points D, E, and F, respectively as shown in Figure 5. Then the cevians $A D, B E$, and $C F$, meet at a point, N_{a}, known as the Nagel point of the triangle [2, p. 160]. We will shortly find the relationship between the radii of the incircles of the T_{i} when P is the Nagel point of $\triangle A B C$; but first we need a lemma.

Figure 5. Nagel point
Lemma 2.3. Let D be the contact point of the excircle of $\triangle A B C$ with side $B C$ (Figure 6). The incircle of $\triangle A B D$ has radius r_{1}. The incircle of $\triangle A D C$ has radius r_{2}. Then

$$
\frac{r_{1}}{r_{2}}=\frac{B D}{D C} .
$$

Proof. Using the formula for the radius of an incircle, we have

$$
\begin{equation*}
r_{1}=\frac{2[A B D]}{A B+B D+A D} \quad \text { and } \quad r_{2}=\frac{2[A D C]}{A D+D C+C A} . \tag{1}
\end{equation*}
$$

Figure 6. $r_{1} / r_{2}=B D / D C$
By a well-known property of the excircle of a triangle [2, p. 88], $B D=s-A B$ and $D C=s-C A$, where $s=(A B+B C+C A) / 2$. Thus $C A+D C=A B+B D$, which implies $A B+B D+A D=A D+D C+C A$. Therefore, the two denominators in equation (1) are equal. Hence $r_{1} / r_{2}=[A B D] /[A D C]$. Since triangles $A B D$ and $A D C$ have the same altitude from A, the ratio of their areas will be proportional to the ratio of their bases. Consequently,

$$
\frac{r_{1}}{r_{2}}=\frac{[A B D]}{[A D C]}=\frac{B D}{D C}
$$

as claimed.
We can now prove the following theorem.
Theorem 2.4. Let N_{a} be the Nagel point of $\triangle A B C$. The cevians through N_{a} form six triangles with the sides of $\triangle A B C$ named T_{1} through T_{6} as shown in Figure 3. Let r_{i} be the radius of the circle inscribed in triangle T_{i}. Two of these circles are shown in Figure 7. Then $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$.

Figure 7. $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$

Proof. By Lemma 2.3,

$$
\frac{r_{1}}{r_{2}} \cdot \frac{r_{3}}{r_{4}} \cdot \frac{r_{5}}{r_{6}}=\frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A F}{F B} .
$$

The expression on the right is equal to 1 by Ceva's Theorem. Thus, we have $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$.

We have found simple relationships between the incircles of the six side triangles formed by the cevians through a point P inside the triangle when P is the orthocenter, centroid, and Nagel point of $\triangle A B C$. No such simple relationships were found when P is the circumcenter, Feuerbach point, Gergonne point, incenter, nine-point center, or Spieker center of the triangle. By this we mean that none of the following relationships hold for all such triangles.

$$
\begin{aligned}
r_{1}+r_{3}+r_{5} & =r_{2}+r_{4}+r_{6}, \\
r_{1} r_{3} r_{5} & =r_{2} r_{4} r_{6}, \\
r_{1}^{2}+r_{3}^{2}+r_{5}^{2} & =r_{2}^{2}+r_{4}^{2}+r_{6}^{2}, \\
r_{1} r_{3}+r_{3} r_{5}+r_{5} r_{1} & =r_{2} r_{4}+r_{4} r_{6}+r_{6} r_{2}, \\
\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{5}} & =\frac{1}{r_{2}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}, \\
\frac{1}{r_{1}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r_{5}^{2}} & =\frac{1}{r_{2}^{2}}+\frac{1}{r_{4}^{2}}+\frac{1}{r_{6}^{2}} .
\end{aligned}
$$

We now consider the circumcircles of the side triangles.
Theorem 2.5. Let P be any point inside $\triangle A B C$. The cevians through P form six triangles with the sides of $\triangle A B C$ named T_{1} through T_{6} as shown in Figure 3. Let R_{i} be the radius of the circle circumscribed about triangle T_{i}. Then

$$
R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6} .
$$

Proof. We use of The Extended Law of Sines which states that if a, b, and c are the lengths of the sides of a triangle opposite angles A, B, and C, then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$

where R is the circumradius of $\triangle A B C$. Thus,

$$
2 R_{1}=\frac{A D}{\sin \angle A B C}
$$

with similar expressions for the other R_{i}. Hence

$$
R_{1} R_{3} R_{5}=\frac{1}{8} \frac{A D}{\sin \angle A B C} \cdot \frac{B E}{\sin \angle B C A} \cdot \frac{C F}{\sin \angle C A B}
$$

and

$$
R_{2} R_{4} R_{6}=\frac{1}{8} \frac{A D}{\sin \angle B C A} \cdot \frac{B E}{\sin \angle C A B} \cdot \frac{C F}{\sin \angle A B C} .
$$

The two results are equal, so $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$.

Theorem 2.6. Let H be the orthocenter $\triangle A B C$ and assume H lies inside $\triangle A B C$. The altitudes through H form six triangles with the sides of $\triangle A B C$ named T_{1} through T_{6} as shown in Figure 3. Let R_{i} be the radius of the circle circumscribed about triangle T_{i}. Then

$$
R_{1}=R_{4}, \quad R_{2}=R_{5}, \quad R_{3}=R_{6}
$$

Proof. It suffices to show that $R_{1}=R_{4}$. Triangles T_{1} and T_{4} are right triangles with the same hypotenuse, $A B$. But the circumradius of a right triangle is equal to half the length of the hypotenuse, so $R_{1}=R_{4}$.

3. Small Wedge Triangles

Let $A D, B E$, and $C F$ be the three cevians through a point P inside $\triangle A B C$. Extend the cevians to the circumcircle of $\triangle A B C$ to get line segments $A D^{\prime}, B E^{\prime}$, and $C F^{\prime}$, where D^{\prime}, E^{\prime}, and F^{\prime} lie on the circumcircle. Then three new triangles are formed with segment $B D^{\prime}$ as one side and the other two sides lying along sides or cevians of $\triangle A B C$. The three new triangles are shown in Figure 8.
We call these triangles wedge triangles. From left to right, the figure shows a small wedge triangle, a medium wedge triangle, and a large wedge triangle.

Figure 8. small, medium, and large wedge triangles
The points $A, E^{\prime}, C, D^{\prime}, B$, and F^{\prime} form a hexagon inscribed in the circumcircle. There are six wedge triangles of each type associated with the sides of this hexagon. We will investigate the relationship between the radii of the circles inscribed in (or circumscribed about) each set of six wedge triangles.
We start with the six small wedge triangles.
Theorem 3.1. Let H be the orthocenter of $\triangle A B C$ and assume H lies inside $\triangle A B C$. The altitudes through $H, A D, B E$, and $C F$ are extended to meet the circumcircle of $\triangle A B C$ at points D^{\prime}, E^{\prime}, and F^{\prime}, respectively. Let $O_{i}\left(r_{i}\right)$ be the incircles of the six small wedge triangles formed as shown in Figure 9. Then

$$
r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}
$$

Figure 9. $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$
Proof. Note that $m \angle B D^{\prime} A=m \angle B E^{\prime} A$ since both angles subtend the same arc. Angles $B D D^{\prime}$ and $A E E^{\prime}$ are right angles. Therefore, $\triangle B D D^{\prime} \sim \triangle A E E^{\prime}$. Thus, the figure consisting of $\triangle B D D^{\prime}$ and its incircle is similar to the figure consisting of $\triangle A E E^{\prime}$ and its incircle. Corresponding parts of similar figures are in proportion, so $r_{1} / r_{4}=B D / E A$. Similarly $r_{3} / r_{6}=C E / F B$ and $r_{5} / r_{2}=A F / D C$. Therefore,

$$
\frac{r_{1} r_{3} r_{5}}{r_{2} r_{4} r_{6}}=\frac{r_{1}}{r_{4}} \cdot \frac{r_{3}}{r_{6}} \cdot \frac{r_{5}}{r_{2}}=\frac{B D}{E A} \cdot \frac{C E}{F B} \cdot \frac{A F}{D C}=\frac{B D \cdot C E \cdot A F}{D C \cdot E A \cdot F B} .
$$

This last fraction is equal to 1 by Ceva's Theorem, so $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$.
Theorem 3.2. Let N_{a} be the Nagel point of $\triangle A B C$. The cevians through N_{a}, $A D, B E$, and $C F$ are extended to meet the circumcircle of $\triangle A B C$ at points D^{\prime}, E^{\prime}, and F^{\prime}, respectively. Let $O_{i}\left(r_{i}\right)$ be the incircles of the six small wedge triangles formed as shown in Figure 10. Then $r_{1}=r_{2}, r_{3}=r_{4}$, and $r_{5}=r_{6}$.

Figure 10. $r_{1}=r_{2}, r_{3}=r_{4}, r_{5}=r_{6}$

Proof. It suffices to show that $r_{1}=r_{2}$. Let K_{1} be the area of $\triangle B D D^{\prime}$ and let s_{1} be its semiperimeter. Define K_{2} and s_{2} analogously. From the formula for the inradius of a triangle, we have

$$
\frac{r_{1}}{r_{2}}=\frac{K_{1} / s_{1}}{K_{2} / s_{2}}=\frac{K_{1} /\left(B D+D D^{\prime}+B D^{\prime}\right)}{K_{2} /\left(D C+D D^{\prime}+C D^{\prime}\right)}
$$

The ratio of the areas of two triangles with the same altitude is equal to the ratio of their bases. So

$$
\frac{r_{1}}{r_{2}}=\frac{B D /\left(B D+D D^{\prime}+B D^{\prime}\right)}{D C /\left(D C+D D^{\prime}+C D^{\prime}\right)}=\frac{B D\left(D C+D D^{\prime}+C D^{\prime}\right)}{D C\left(B D+D D^{\prime}+B D^{\prime}\right)} .
$$

Dividing numerator and denominator by $D D^{\prime}$ gives

$$
\frac{r_{1}}{r_{2}}=\frac{B D\left(\frac{D C}{D D^{\prime}}+1+\frac{C D^{\prime}}{D D^{\prime}}\right)}{D C\left(\frac{B D}{D D^{\prime}}+1+\frac{B D^{\prime}}{D D^{\prime}}\right)}
$$

Angles $\angle B C D^{\prime}$ and $\angle B A D$ are congruent because they intercept the same arc. The same is true for $\angle C D^{\prime} D$ and $\angle A B D$. Thus, $\triangle C D D^{\prime} \sim \triangle A D B$ and hence $C D^{\prime} / D D^{\prime}=A B / B D$ and $D C / D D^{\prime}=A D / B D$. Similarly, $B D^{\prime} / D D^{\prime}=C A / D C$ and $B D / D D^{\prime}=A D / D C$. Therefore,

$$
\frac{r_{1}}{r_{2}}=\frac{B D\left(\frac{A D}{B D}+1+\frac{A B}{B D}\right)}{D C\left(\frac{A D}{D C}+1+\frac{C A}{D C}\right)}=\frac{A D+B D+A B}{A D+D C+C A}
$$

But, as noted in the proof of Lemma 2.3, $A D+B D+A B=A D+D C+C A$. Hence, the fraction on the right is equal to 1 , so $r_{1}=r_{2}$.

One aspect of Sangaku problems is that they often conclude with some simple relationship between one or more incircles that is not immediately apparent. I find the result especially pretty when it concludes that two incircles are congruent. The following example is an adaptation of problem 2 from [7], which is based on an 1881 sangaku hung in the Yamagata prefecture, [5].

Theorem 3.3. In Figure 11, $A B C D$ is a square, $C F G$ is an equilateral triangle, and E is the midpoint of $C F$. Then the two yellow incircles are congruent.

Figure 11. yellow circles are congruent

Wasan geometers often referred to medians and altitudes of triangles. However, the concept of the Nagel point of a triangle was probably unknown to the Japanese mathematicians during the Edo period. So Theorem 3.2 is unlikely to be something they would have discovered. However, Theorem 3.2 can be reformulated as follows to put it in a form that would have been appropriate to have been inscribed on a wooden tablet and hung in a temple as a pretty result.

Theorem 3.4 (reformulation of Theorem 3.2). In Figure 12, D is a point on side $B C$ of $\triangle A B C$ such that $A B+B D=A C+C D$. Then the two yellow incircles are congruent.

Figure 12. yellow circles are congruent
We have found simple relationships between the incircles of the six small wedge triangles formed by the cevians through a point P inside the triangle extended to the circumcircle when P is the orthocenter or the Nagel point of $\triangle A B C$. No such simple relationships were found when P is the centroid, circumcenter, Feuerbach point, Gergonne point, incenter, nine-point center, or Spieker center of the triangle.

We now consider the circumcircles of the small wedge triangles.
Theorem 3.5. Let P be any point inside $\triangle A B C$. The cevians through $P, A D$, $B E$, and $C F$ are extended to meet the circumcircle of $\triangle A B C$ at points D^{\prime}, E^{\prime}, and F^{\prime}, respectively. Let $O_{i}\left(R_{i}\right)$ be the circumcircles of the six small wedge triangles formed as shown in Figure 13. Then $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$.

Proof. By the Extended Law of Sines, we have

$$
2 R_{1}=\frac{B D}{\sin B D^{\prime} A} \quad \text { and } \quad 2 R_{4}=\frac{A E}{\sin \angle B E^{\prime} A}
$$

But $m \angle B D^{\prime} A=m \angle B E^{\prime} A$ because both angles subtend the same arc of the circumcircle of $\triangle A B C$. Therefore, $R_{1} / R_{4}=B D / E A$. Similarly, $R_{2} / R_{5}=D C / A F$

Figure 13. $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$
and $R_{3} / R_{6}=C E / F B$. Therefore

$$
\frac{R_{1} R_{3} R_{5}}{R_{2} R_{4} R_{6}}=\frac{R_{1}}{R_{4}} \cdot \frac{R_{3}}{R_{6}} \cdot \frac{R_{5}}{R_{2}}=\frac{B D}{E A} \cdot \frac{C E}{F B} \cdot \frac{A F}{D C}=\frac{B D \cdot C E \cdot A F}{D C \cdot E A \cdot F B} .
$$

This last fraction is equal to 1 by Ceva's Theorem, so $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$.

4. Medium Wedge Triangles

Theorem 4.1. Let P be any point inside $\triangle A B C$. The cevians through $P, A B$, $B D$, and $C F$ are extended to meet the circumcircle of $\triangle A B C$ at points D^{\prime}, E^{\prime}, and F^{\prime}, respectively. Circles $O_{i}\left(r_{i}\right)$ are inscribed in the six medium wedge triangles formed as shown in Figure 14. Then $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$.

Figure 14. $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$

Proof. Note that $\angle A E^{\prime} B$ and $\angle A D^{\prime} B$ both subtend the same arc and are therefore congruent. Also, $\angle B P D^{\prime}=\angle A P E^{\prime}$ because they are vertical angles. Therefore $\triangle B P D^{\prime} \sim \triangle A P E^{\prime}$. Thus, the figure consisting of $\triangle B P D^{\prime}$ and its incircle is similar to the figure consisting of $\triangle A P E^{\prime}$ and its incircle. Corresponding parts of similar figures are in proportion, so

$$
\frac{r_{1}}{r_{4}}=\frac{B P}{A P}
$$

In the same manner,

$$
\frac{r_{5}}{r_{2}}=\frac{A P}{C P} \quad \text { and } \quad \frac{r_{3}}{r_{6}}=\frac{C P}{B P} .
$$

Consequently,

$$
\frac{r_{1} r_{3} r_{5}}{r_{2} r_{4} r_{6}}=\frac{r_{1}}{r_{4}} \cdot \frac{r_{3}}{r_{6}} \cdot \frac{r_{5}}{r_{2}}=\frac{B P}{A P} \cdot \frac{C P}{B P} \cdot \frac{A P}{C P}=1
$$

and the result follows.

5. Large Wedge Triangles

Theorem 5.1. Let O be the circumcenter of $\triangle A B C$. The cevians through O, $A D, B E$, and $C F$ are extended to meet the circumcircle of $\triangle A B C$ at points D^{\prime}, E^{\prime}, and F^{\prime}, respectively. Let $O_{i}\left(r_{i}\right)$ be the incircles of the six large wedge triangles formed (two of these circles are shown in Figure 15). Then

$$
R_{1}=R_{4}, \quad R_{2}=R_{5}, \quad R_{3}=R_{6}
$$

Figure 15. $R_{1}=R_{4}$

Proof. It suffices to show that $R_{1}=R_{4}$. Note that $A D^{\prime}$ and $B E^{\prime}$ are diameters of the circumcircle, so $\angle B A E^{\prime}$ and $\angle A B D^{\prime}$ are right angles. Also, $m \angle B D^{\prime} A=$ $m \angle B E^{\prime} A$ since both angles subtend the same arc. Segment $A B$ is common to both triangles. Hence $\triangle A B D^{\prime} \cong \triangle B A E^{\prime}$. Thus, their incircles are also congruent.

We have found a simple relationship between the incircles of the six large wedge triangles formed by the cevians through a point P inside the triangle extended to the circumcircle when P is the circumcenter of $\triangle A B C$. No such simple relationships were found when P is the centroid, Feuerbach point, Gergonne point, incenter, Nagel point, nine-point center, orthocenter, or Spieker center of the triangle.

References

[1] Anmei Aida, Zinbyo Bukkaku Sangakusyu, (Mathematical Tablets).
[2] Nathan Altshiller-Court, College Geometry, 2nd edition, Dover Publications, New York, 2007.
[3] Kagen Fujita, Zoku Sinpeki Sanpo, (Solutions to Mathematical Tablets), vol. 2, 1807.
[4] Hidetosi Fukagawa and Dan Pedoe, Japanese Temple Geometry Problems, Winnipeg, Canada, Charles Babbage Research Center, 1989.
[5] A. Hirayama and M. Matsuoka, The sangaku in Yamagata, 1966.
[6] Sigeto Iwai, Sanpo Zasso, (Mathematical Tablets), 1830.
[7] Hiroshi Okumura, Problems 2019-2, Sangaku Journal of Mathematics, 3(2019)24-25.
[8] Stanley Rabinowitz, Relationships Between Six Incircles. Sangaku Journal of Mathematics, 3(2019)51-66. http://www. sangaku-journal. eu/2019/SJM_2019_51-66_Rabinowitz.pdf
[9] T. Yosida, Zoku Sinpeki Sanpo Kai (Solutions to Mathematical Tablets), vol. 2.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

