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1. Introduction

We consider a problem in Wasan geometry involving a parallelogram, which was
rarely considered in Wasan. Let ABCD be a quadrilateral such that the sides
DA and BC are parallel (see Figure 1). We assume that α, β, γ, δ, ε are circles
of radii a, b, c, d, e, respectively, lying inside of ABCD such that ε touches BC,
CD and DA; γ is the incircle of the curvilinear triangle made by BC, CD and
ε; δ is the incircle of the curvilinear triangle made by CD, DA and ε; α touches
DA, AB and ε externally; β touches AB, BC and α, ε externally. We denote
the configuration consisting of ABCD and the five circles by Q. If ABCD is
a parallelogram for Q, we say that Q has a parallelogram. We generalize the
following problem in [2] (see Figure 2).

Problem 1. Q has a parallelogram and a = d. Find the value e/a.
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Figure 1: The configuration Q.
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Figure 2: Q with AB ∥ CD, a = d.
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2. Generalization

We give a condition in which Q has a parallelogram in a general case a ̸= d. We
use the next theorem [1]. A proof of this can be found in [4].

Theorem 1. The following relation holds for Q.

(1) a = e2/(4b).

Theorem 2. The configuration Q has a parallelogram if and only if

(2)
√
b =

√
d+

√
e

2
.

Proof. Assume that Q has a parallelogram. Let t = tan(D/2). Then we have

(3) t = tan
B

2
=

e− d

2
√
de

,

and tan(A/2) = tan(C/2) = 1/t (see Figure 3). From |DA| = |BC| we have

d/t+ 2
√
de+ 2

√
ea+ at = b/t+ 2

√
be+ et.

Substituting (1) and (3) in the last equation and rearranging, we get

(2
√
b−

√
d−

√
e)(2

√
b−

√
d+

√
e)(2

√
bd+ e−

√
de)(2

√
bd+ e+

√
de)

8b(d− e)
√
d

= 0.

Therefore we get (2). Conversely, we assume (2). Let d′ be the inradius of the
curvilinear triangle made by ε, DA and the tangent of ε which forms a par-
allelogram with the lines DA, AB and BC containing ε. Then we get

√
b =

(
√
d′ +

√
e)/2 as we have just proved, i.e., d = d′. Hence the tangent coincides

with CD. Therefore ABCD is a parallelogram. □
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Figure 3.

The next corollary involving two congruent circles and the golden number
gives an answer of the problem. A theorem involving two congruent circles and
the golden number can be found in [3].

Corollary 1. If Q has a parallelogram, then the circles α and δ are congruent if
and only if √

e

a
=

1 +
√
5

2
.
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Proof. Eliminating b from (1) and (2), we get e =
√
a(
√
d+

√
e), which is equiv-

alent to (√
e

a
− 1 +

√
5

2

)(√
e

a
− 1−

√
5

2

)
=

√
d

a
− 1.

□
Corollary 2. If Q has a parallelogram, then 2

√
b+

√
c = 2

√
a+

√
d.

Proof. The corollary follows from (2) and
√
a = (

√
c+

√
e)/2. □

3. Isosceles trapezoid

We consider the case in which ABCD is an isosceles trapezoid with |AB| = |CD|
for Q (see Figure 4). In this case we say that Q has an isosceles trapezoid. Let φ
be the reflection in the line parallel to BC passing through the center of ε. If Q
has an isosceles trapezoid, then we can get another Q having a parallelogram by
replacing α, β and AB by φ(β), φ(α) and φ(AB), respectively with appropriate
relabeling, and vise versa (see Figure 5). Therefore we get the next theorem.
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Theorem 3. The configuration Q has an isosceles trapezoid if and only if

√
a =

√
d+

√
e

2
.

In this event, the following statements hold.
(i) The circles β and δ are congruent if and only if√

e

b
=

1 +
√
5

2
.

(ii) The relation 2
√
a+

√
c = 2

√
b+

√
d holds.
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