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Abstract. We investigate Diagram 29 in the Appendix of Yojutsu Shindai, which
contains one hundred Sangaku-like diagrams about tangent circles and lines in a
square. While the circles in most of these diagrams fall into three kinds, small,
medium, and large, of radii in the ratio 1 : 2 : 4, Diagram 29 is one of the
exceptions. We determine the proportions of these radii precisely.
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1. Introduction

The Appendix of the remarkable book [2] (see also [1, pp. 189–206]) contains one
hundred Sangaku-like diagrams, each consisting of tangent circles and lines in a
square. For most of these diagrams, the complete circles in each diagram fall into
three kinds, small, medium, and large, of radii in the ratio 1 : 2 : 4. There are
exceptions, and Diagram 29 is one of them (see Figure 1). Here, while the small
and medium circles have radii in the ratio 1 : 2, the large circles do not have
radius 4. The purpose of this note is to determine this radius, and to decide if
there are different configurations beginning with a large circle in a corner of the
square.

To simplify the algebra, we consider instead the reflection of the diagram about
a line joining the midpoints of two opposite sides of the square (see Figure 2),
which we label as OABC and has each side of length a. We shall work with a
Cartesian coordinate system with origin at O such that B has coordinates (a, a),
i.e., A = (a, 0) and C = (0, a). For a given R > 0, beginning with a circle C1 with
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Figure 1: JTG 29
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′

center K1 = (R,R) and radius r1 = R, we construct, inside the square,
(i) the two tangents L1, L2 from B,
(ii) the circle C2 congruent to C1 and tangent to both OA and L1,
(iii) apart from L1, the second internal common tangent L3 of the circles C1 and
C2,
(iv) the circle C3 tangent to the lines OA, L1, and L3,
(v) the incircle C4 of the triangle bounded by the lines L1, L2, and L3,
(vi) the second external common tangent L4 of the circles C2 and C4.

In this note we consider the possibility of two circles C5 and C6 on the same side
of L1, congruent to C4, tangent to each other and to L1, so that C5 is also tangent
to L4, and C6 to AB.

Notation: For i = 1, 2, . . . , 6, we label the center of the circle Ci by Ki, and
its radius by ri. Also, for j = 1, 2, 3, 4, the point of tangency of Ci and Lj is
denoted by Ti,j (provided that the two objects are tangent to each other). The
point of intersection of the lines Li and Lj is denoted by Pi,j. For the sides of the
square, we use x, y, x′, y′ for the OA, OC, CB, AB respectively. In the diagrams,
the points are usually not labelled, but can be easily identified from the tangency
or intersecting lines. The point of tangency of a circle and a line is clearly the
orthogonal projection of the center of the circle on the line. These are computed
using the Lemma below.

Lemma. The orthogonal projection of P = (u, v) on L : fx + gy + h = 0 is the
point (

g(gu− fv)− fh

f 2 + g2
,
−f(gu− fv)− gh

f 2 + g2

)
.

Proof. This is the point of intersection of the two lines

fx+gy+ h =0,

−gx+fy+gu− fv =0.

�
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2. The circles C1 and C2
Proposition 1. Suppose the tangents L1 and L2 intersect OA and OC at P1,x

and P2,y respectively, with P1,xA = P2,yC = b < a, and BP1,x = c (see Figure 3).
Then

R =
a(a− b)

c+ a− b
.

Proof. Consider the right triangle ABP1,x with sides BA = a, AP1,x = b, P1,xB =

c. Its excircle on the side AP1,x has radius
ab

c+ a− b
. The right triangle OP1,yP1,x

is similar to ABP1,x with
OP1,x

AP1,x

=
a− b

b
. Its excircle on the side OP1,x is the

circle C1 (see Figure 3). Therefore,

R =
a− b

b
· ab

c+ a− b
=

a(a− b)

c+ a− b
.

�
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Figure 3.

By the coordinates P1,x = (a − b, 0), P2,y = (0, a − b), and B = (a, a), we obtain
the equations of the lines

L1 : ax− by − a(a− b) = 0

and

L2 : bx− ay + a(a− b) = 0.

From these we find the points of tangency T1,1 and T1,2. Note that these are
symmetric with respect to the line y = x.
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Let P be the point of intersection of the lines y = R and L1 (see Figure 3). This
is the point

P =

(
a(a− b) + bR

a
,R

)
.

Since the point K2 is the reflection of K1 in the point P ,

K2 = 2P −K1 =

(
2a(a− b)− (a− 2b)R

a
,R

)
.

3. The circles C3 and C4
Since P3,x is the reflection of P1,x in the line x = a(a−b)+bR

a
,

P3,x = 2

(
a(a− b) + bR

a
, 0

)
− (a− b, 0) =

(
a(a− b) + 2bR

a
, 0

)
.

From this, we obtain the points of tangency T2,x, T2,1, T2,3, and T1,3 (see Figure
4).
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Figure 4.

Using the points P and P3,x we obtain the equation of the line L3:

L3 : ax+ by − a(a− b)− 2bR = 0.

It is perpendicular to L2 at

P2,3 =

(
a(a− b)2 + 2abR

c2
,
a(a2 − b2) + 2b2R

c2

)
.

Figure 4 also shows an isosceles triangle PP1,xP3,x, bounded by the lines L1, L3,
and OA, with

P1,xP3,x =
2bR

a
, PP1,x = PP3,x =

cR

a
.
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Here,
P1,xT3,x

P1,xP
=

b

c
. The inradius of the triangle PP1,xP3,x equals

(1) r3 = T3,xK3 = R · b

c+ b
=

bR

c+ b

by the angle bisector theorem. The incenter is the point

K3 =

(
a(a− b) + bR

a
,
bR

c+ b

)
.

From these the points of tangency can be determined.

The three lines L1, L2, and L3 bound a right triangle BPP2,3 with

BP2,3 =
2ab(a−R)

ca
, PP2,3 =

(a2 − b2)(a−R)

ca
, BP =

c2(a−R)

ca
.

This is the right triangle with sides 2ab, a2−b2, a2+b2 = c2, magnified by a factor
a−R

ca
=

1

c+ a− b
. By Proposition 1, it has inradius

r4 =
BP2,3 + PP2,3 − BP

2
=

1

c+ a− b
· 2ab+ (a2 − b2)− c2

2

=
1

c+ a− b
· b(a− b) =

b(a− b)

ca
(a−R) =

bR

a
.(2)

The incenterK4 is the intersection of the bisectors of angles P1,xPP2,x and P1,xBP2,y:

K4 =

(
a(a− b) + bR

a
,
a(a− b) + bR

a

)
.

Proposition 2.

r1 : r3 : r4 =
1

b
:

1

c+ b
:
1

a
.

Proof. From (1) and (2),

r1 : r3 : r4 = R :
b

c+ b
R :

b

a
R =

1

b
:

1

c+ b
:
1

a
.

�

4. The circles C5 and C6
There is a second external common tangent L4 of C2 and C4, which is the reflection
of L3 in the line K2K4 (see Figure 5). The line K2K4 has an equation

ax+ ay − 2a(a− b)− 2bR = 0;

it intersects L3 at (
a(a− 2b) + 2bR

a
, a

)
on the line BC. Since the reflection of P3,x in the line K2K4 is the point(

2(a(a− b) + bR)

a
, a− b

)
,

the second tangent L4 is the line joining these two points:

L4 : abx+ a2y − a(a− b)(a+ 2b)− 2b2R = 0.
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The circle C4 is tangent to the lines L1 and L4 at

T4,1 =

(
a(a− b)(a2 + ab+ b2) + b2(a+ b)R

ac2
,
a2(a− b) + b(a+ b)R

c2

)
,

T4,4 =

(
a(a− b)(a2 + 2b2) + b(a2 − ab+ 2b2)R

ac2
,
a(a3 − b3) + b2(a+ b)R

ac2

)
,

respectively. We make use of these to construct two circles C5 and C6 specified in
the Introduction, each congruent, and determine the condition under which C6 is
also tangent to AB. The center of the circle C5 is

K5 = 2P1,4 −K4 =

(
a(a− b)(a2 + 2ab+ 3b2)− b(a2 − 3b2)R

ac2
,

a(a− b)(a2 + 2ab− b2)− b(a2 − 4ab+ b2)R

ac2

)
.

The points of tangency are

T5,1 = 2P1,4 − T4,1 =

(
(a− b)(a2 + ab+ 3b2)− b2(a− 3b)R

ac2
,

a(a− b)(a+ 2b)− (a− 3b)bR

c2

)
,

T5,4 = 2P1,4 − T4,4 =

(
a(a− b)(a2 + 2ab+ 2b2)− b(a+ b)(a− 2b)R

ac2
,

a(a− b)(a2 + ab− b2) + b2(3a− b)R

ac2

)
.
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Then we proceed to construct the circle C6 tangent to C5 and L1.

K6 = K5 + 2(P1,4 − T4,1) = (2P1,4 −K4) + 2(P1,4 − T4,1) = 4P1,4 − 2T4,1 −K4

=

(
a(a− b)(a2 + 2ab+ 5b2)− b(a2 + 2ab− 5b2)R

ac2
,

a(a− b)(a2 + 4ab− b2)− b(3a2 − 6ab+ b2)R

ac2

)
,

T6,1 = P1,4 + 3(P1,4 − T4,1) = 4P1,4 − 3T4,1

=

(
a(a− b)(a2 + ab+ 5b2)− b2(3a− 5b)R

ac2
,

a(a− b)(a+ 4b)− b(3a− 5b)R

c2

)
.

The circles C5 and C6 are tangent at

T ′
5,6 =

K5 +K6

2
=

(
a(a− b)(a2 + 2ab+ 4b2)− b(a2 + ab− 4b2)R

ac2
,

a(a− b)(a2 + 3ab− b2)− b(2a2 − 5ab+ b2)R

ac2

)
.

In general, the circle C6 is not tangent to AB, as Figure 5 shows.

Proposition 3. The circle C6 is tangent to AB if and only if a : b = 4 : 3.

Proof. The circle C6 is tangent to AB if and only if the difference between a and the
x-coordinate of K6 is equal to r4. The difference between a and the x-coordinate
of K6 is

a−
(
a(a− b)(a2 + 2ab+ 5b2)− b(a2 + 2ab− 5b2)R

ac2

)
=

b(5b2 − 2ab− a2)

ac2
(a−R),

and

r4 =
b(a− b)

ca
(a−R)

by (2). Setting these two equal we obtain

5b2 − 2ab− a2

c
= a− b.

Simplifying, we have

2b(3a− 4b)(a2 − 3b2) = 0.

From this, a : b = 4 : 3 or
√
3 : 1.

(a) For a : b = 4 : 3, R = 3
8
a and

r1 = r2 =
3

8
a, r3 =

1

16
a, r4 = r5 = r6 =

1

8
a.

The circle C6 is indeed tangent to AB, as shown in Figure 6.

(b) When a : b =
√
3 : 1, R = (2−√

3)a and

r1 = r2 = (2−
√
3)a, r3 =

1

3
(2−

√
3)a, r4 =

1

3
(2
√
3− 3)a.
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The centers of C2 and C5 are the points

K2 =

(
(5
√
3− 6)a

3
, (2−

√
3)a

)
, K5 =

(
a,

1

3
(9− 4

√
3)a

)
.

Since the center K5 lies on AB, the circle C5 cannot be completely inside the
square. The same is true for C2 since the x-coordinate of K2 exceeds a − R =
(
√
3− 1)a (see Figure 7). �
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Figure 6. a : b = 4 : 3
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5. Appendix

We consider the case when C2 lies inside the square. This is the case when the
x-coordinate of K2 is less than a−R:

a−R− 2a(a− b)− (a− 2b)R

a
> 0.

Replacing R by a(a−b)
c+a−b

, we obtain (2b− a)c− a(a− b) > 0. Hence

2b3 − 2ab2 + 2a2b− a3 > 0.

For a fixed a > 0, f(b) = 2b3− 2ab2+2a2b−a3 is an increasing function of b since
f ′(b) = 6b2 − 4ab + 2a2 > 0. The only real root of f(b) = 0 is b ≈ 0.6478a (see
Figure 8).
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Figure 8. C2 just fits in the square
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