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Abstract. A chord of a circle δ with two circles touching δ internally and the
chord at the midpoint determines two congruent arbeloi. In this paper we consider
the radius of Archimedean circles of such arbeloi determined by a circle and its
chords. There are several theorems in Wasan geometry involving Archimedean
circles of several arbeloi determined by a circle and its chords. We give simple
proofs of those theorems. Solutions of Problems 2017-3-8 and 2019-3-4 are also
given.
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1. Introduction

We consider an arbelos formed by three semicircles α, β and γ of diameters AO,
BO and AB, respectively for a point O on the segment AB. We denote the
arbelos by (α, β, γ) and call the radical axis of α and β the axis of (α, β, γ). Let
a and b be the radii of α and β, respectively. Circles of radius rA = ab/(a+ b) are
called Archimedean circles of (α, β, γ) or are said to be Archimedean with respect
to (α, β, γ). The circle touching α (resp. β) externally γ internally and the axis
from the side opposite to B (resp. A) is Archimedean with respect to (α, β, γ).

AB O

α
β

γ

Figure 1: (α, β, γ)

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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In the first half of this paper, we give a solution of Problem 2017-3-8 [16] and
consider a chord of γ passing through the point A as shown in Figure 1. We show
that the chord yields several Archimedean circles of (α, β, γ) in a certain case.

Let γ̂ be the circle made by the semicircle γ and its reflection in AB. A chord
of γ̂ passing through A with two circles touching γ̂ internally and the chord at
the midpoint forms two congruent arbeloi such that the chord is the axis of the
arbeloi. We show that the radius of Archimedean circles of the arbeloi can be
expressed in a simple way.

In the last part we consider the radius of Archimedean circles of the arbeloi de-
termined by a given circle and its chord. There are several theorems in Wasan
geometry stating relationships between the radius of the circle and the radii of
Archimedean circles of several arbeloi determined by the circle and its chords in
the case in which the chords form a triangle or a quadrilateral. We give simple
proofs of those theorems and a solution of Problem 2019-3-4 [15].

2. Solution of Problem 2017-3-8

Let J be the point of intersection of γ and the perpendicular bisector of AO, and
let δ be the circle touching the segment AJ at the midpoint and the minor arc
AJ of γ internally for (α, β, γ). Problem 2017-3-8 may be stated as follows (see
Figure 2):

Problem 1. If the semicircle β and the circle δ have the same radius, show a = 7b.

In this section we give several characterizations of the figure in the problem to-
gether with a solution. Let I be the point of intersection of γ and the axis.
Considering the power of the point O with respect to γ, we get |IO| = 2

√
ab. We

use a rectangular coordinate system with origin O such that the farthest point
on α has coordinates (a, a). For a point P , Pf denotes the foot of perpendicular
from P to AB. We denote the distance between the center of a circle ζ and a line
l by dζ(l). The next theorem gives characterizations of the figure in the problem
and a solution of the problem.

AB JfO

J
γ

α

β

δ

ε

I

Figure 2.

Theorem 1. If ε is the circle touching the segment JO and the minor arc of α
cut by JO internally at the midpoint, then the following statements are equivalent.
(i) The semicircle β and the circle δ have the same radius.
(ii) The relation a = 7b holds.
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(iii) The circle ε is Archimedean with respect to (α, β, γ).
(iv) The point of tangency of γ and δ is the reflection of I in the line JJf .
(v) The point of tangency of α and ε lies on the segment AI.

Proof. Let m =
√
a+ 2b. Then the point J has coordinates (a,m

√
a) and the line

AJ has an equation mx+
√
ay − 2am = 0. Since the center of γ has coordinates

(a− b, 0), we have

dγ(AJ) =
|m(a− b)− 2am|√

2(a+ b)
= m

√
a+ b

2
.

While the diameter of δ equals a + b − dγ(AJ). Therefore (i) is equivalent to
2b = a+ b− dγ(AJ), which is equivalent to (ii), i.e. (i) and (ii) are equivalent.

Since mx −
√
ay = 0 is an equation of the line JO, dα(JO) = ma/

√
2(a+ b).

While the diameter of ε equals a − dα(JO). Therefore (iii) is equivalent to a −
dα(JO) = 2rA, which is also equivalent to (ii), i.e. (ii) and (iii) are equivalent.

The point of tangency of γ and δ coincides with the point of intersection of γ and
the perpendicular bisector of AJ , and has y-coordinate

√
a(a+ b)/2. While I has

y-coordinate 2
√
ab. Then

√
a(a+ b)/2 = 2

√
ab is equivalent to (ii), i.e., (ii) and

(iv) are equivalent.

The point of tangency of α and ε coincides with the point of intersection of α and
the perpendicular from Jf to JO and has x-coordinate a− am/

√
2(a+ b). Since

the point of intersection of α and AI has x-coordinate 2rA, the two x-coordinates
coincide if and only if (ii) holds, (ii) and (v) are equivalent. □

3. The reflection of the line JO in the axis

In this section we consider another point H on γ, and consider the case in which
the line HO is the reflection of the line JO in the axis. Several new Archimedean
circles of (α, β, γ) are obtained in this case.

3.1. Fundamental properties. For two points P and Q, we denote the circle
of center P passing through Q by P (Q).

β

I
J

AB O

γ

α

G

HB(O)

Figure 3.

Theorem 2. The following statement are equivalent for a point H on γ.
(i) The circle touching AH at the midpoint and the minor arc AH of γ internally
has radius a/2.
(ii) The point H coincides with the point of intersection of γ and the circle B(O).
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(iii) The midpoint of the minor arc AH of γ coincides with J .
(iv) The reflection of the line JO in the axis coincides with the line HO.

Proof. Let G be the center of γ (see Figure 3). The part (i) is equivalent to
dγ(AH) = b, or the line AH has an equation

(1) b(x− 2a) +m
√
ay = 0,

since G has coordinates (a − b, 0), where recall m =
√
a+ 2b. This is equivalent

to that H has coordinates

(2) (−2rA, 2rAm/
√
a),

which coincides with the point of intersection of γ and B(O). Hence (i) and (ii)
are equivalent. The part (iii) is equivalent to that the lines AH and GJ are
perpendicular, while the line GJ has an equation

m
√
a(x− (a− b))− by = 0.

Hence (i) and (iii) are equivalent. The equivalence of (ii) and (iv) follows from
that the slope of OJ equals m/

√
a and the slope of the line joining O and the

point of coordinates (2) equals −m/
√
a. □

3.2. A rhombus with Archimedean incircle. We show that there are several
new Archimedean circles of (α, β, γ) if HO is the reflection of JO in the axis,
where the words “with respect to (α, β, γ)” will be omitted. We now assume
Theorem 2(i) and that M is the remaining point of intersection of α and AH, N
is the point of intersection of β and BH, α meets JO and JA in points E and
F , respectively, and the line BJ meets AH, HO and NO in points S, T and U ,
respectively (see Figure 4).

H

M

T

E F
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J

AB
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OHf Jf

S

U

α

γ

β

Figure 4.

We denote the circle of diameter PQ by (PQ) for two points P and Q. The line
BJ has an equation

(3) −
√
a(x+ 2b) +my = 0.

Hence the point S has coordinates (0, 2b
√
a/m) by (1), i.e., S lies on the axis.

While the line NO is parallel to AH and has equation bx + m
√
ay = 0 by (1).

This implies that U has x-coordinate −2rA and lies on HHf by (2). Since the
circle (MO) is Archimedean [10], and MHNO is a rectangle, the circle (HN) is
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Archimedean, while the distance between the axis and the line HHf equals 2rA.
Therefore SHUO is a rhombus with Archimedean incircle of center T , where T
has coordinates (−rA, rAm/

√
a) and lies on β. The circle of center Jf touching

AH is Archimedean. The point J is the external center of similitude of α and the
circle (EF ), which is Archimedean [3, 9]. Therefore the fact |TJf | = m

√
a = |JJf |

implies that T is also the external center of similitude of α and the Archimedean
circle (MO), i.e., the tangent of α from T also touches (MO). The point M has
coordinates (2r2A/a, 2rAm

√
a/(a + b)) and the line HfM has equation −

√
a(x +

2rA) + my = 0, which is parallel to BJ by (3) and passes through the point E

whose coordinates are (a− rA,
√

a2 − r2A).

3.3. Schoch line and the triangle HOJ. The perpendicular to AB expressed
by the equation x = s, where s = rA(b − a)/(a + b), is called Schoch line, which
passes through the center of the Archimedean circle touching γ internally and the
circles B(O) and A(O) externally [4], [10] (see Figure 5). We consider properties
of the triangle HOJ related to this line. The proofs are straight forward and will
be omitted.

Theorem 3. The incircle of the triangle HOJ has center S and radius
√
2abrA/m,

and touches the side HO at T and the side HJ at the point of intersection of HJ
and Schoch line.

A(O)

B(O)

AB O

H

S

M

T W

J

I

V

ζ

XY

Figure 5.

Let ζ be the incircle of HOJ . The point of tangency of ζ and HJ has coordinates
(s, (3a + b)b

√
am/(a + b)2). Let W be the reflection of T in the axis. Then ζ

touches JO at W and the circle (TW ) is Archimedean. If V is the reflection of
M in Schoch line, then V lies on HO and the circle (MV ) is Archimedean. If X
is the reflection of T in the point S, and Y is the reflection of X in the axis, then
X lies on ζ and BJ and the circle (XY ) is Archimedean. Notice that Y also lies
on ζ.

4. Arbeloi determined by a circle and its chord

In this section we consider the two arbeloi formed by a circle δ and two circles
touching δ internally and a chord of δ at the midpoint. We will show simple
relationships between the radius of Archimedean circles of the arbeloi and the
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chord. The case in which the chord is a side of a triangle or a quadrilateral was
considered in Wasan geometry. We consider the case in the last part.

4.1. Arbelos determined by a chord passing through the point A. Let
γ̂ be the circle made by γ and its reflection in AB. For a point H on γ, we
consider the two congruent arbeloi formed by γ̂ and the two circles touching γ̂
internally and the chord AH at the midpoint (see Figure 6). We denote the radius
of Archimedean circles of these arbeloi by r(H).

Theorem 4. r(H) =
|AHf |

8
.

Proof. Since the radii of the two inner circles forming the arbeloi are (a + b −
dγ(AH))/2 and (a+ b+ dγ(AH))/2, we get

(4) r(H) =
(a+ b)2 − dγ(AH)2

4(a+ b)
.

Let |AHf | = h. Then |HfH|2 = h|BHf | = 2(a+ b)h− h2. Since the midpoint of
AH has coordinates (2a− h/2, |HfH|/2), we get

dγ(AH)2 =

(
a+ b− h

2

)2

+
|HfH|2

4

= (a+ b)2 − (a+ b)h+
h2

4
+

(a+ b)h

2
− h2

4
= (a+ b)2 − (a+ b)h

2
.

Therefore by (4) we get

r(H) =
(a+ b)h

2

1

4(a+ b)
=

h

8
.

□

r(H)
r(H)

r(H) r(H)

α

β

H

γ

O A

γ̂

B

Figure 6.

A

H

B Hf

Figure 7.

Notice that r(H) depends only on |AHf |. Hence the four red circles in Figure 7
are congruent, while the two green circles are not. The four red circles and four
pink semicircles also have the same radius. If z < a/4, then 8z < 2a, i.e., there is
a point H on γ such that |AHf | = 8z for any b > 0. Therefore there is a point H
on γ such that r(H) = z for a real number z < a/4. Let K be the farthest point
on γ from AB.
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Corollary 1. The following statements are true.
(i) r(I) = a/4.
(ii) r(J) = a/8.
(iii) r(K) = (a+ b)/8.

A problem related to Corollary 1(ii) in the case a = b can be found in a sangaku
presented in 1808 in Chiba [6], which was proposed by Kimitsuka or Kimizuka (君
塚喜三郎). A problem stating Corollary 1(iii) can be found in the sangaku hung
in 1865 in Gifu [12], which was proposed by Shichi (志智孝成). Essentially the
same problem can also be found in [13]. The next corollary follows from Corollary
1 (see Figures 8, 9, 10).

Corollary 2. The following statements are true for (α, β, γ).
(i) r(I) = rA if and only if a = 3b.
(ii) r(J) = rA if and only if a = 7b.

(iii) r(K) = rA if and only if a =
(
1±

√
2
)2

b.

I

B AO

Figure 8: a = 3b
AB O

J

I

Figure 9: a = 7b

B O A

K

I

Figure 10: a =
(
1 +

√
2
)2

b

B O A

I

Figure 11.

B O A

K
I

Figure 12.

Corollary 2(ii) gives another characterization of the figure of Problem 1 (see Fig-
ure 9). Figures 11 is obtained from Figure 8 with its reflection in the line AB
by removing the Archimedean circles of (α, β, γ), where the triangle is equilat-
eral. Figure 12 is obtained from Figure 10 similarly, with several additional line
segments and green circles.

4.2. Triangle case. We now consider a triangle ABC with circumcircle δ with
the standard notations |AB| = c, |BC| = a and |CA| = b (see Figure 13). If a
chord of δ has length a, then ā denotes the radius of Archimedean circles of the
arbeloi formed by δ and two circles touching δ internally and the chord at the
midpoint.

Theorem 5. For a triangle ABC with circumradius R, we have c = 4
√
Rc̄.

Proof. If a′ and b′ are the radii of the two circles touching the circumcircle inter-
nally and AB at the midpoint, then R = a′ + b′ and c/2 = 2

√
a′b′. Hence we
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get

c̄ =
a′b′

a′ + b′
=

c2

16R
.

□

The only if part of the next theorem is Problems 2019-3-4 [15], which was presented
by Kawada (川田保知) in a sangaku dated 1816 [11, 14] (see Figure 14).

Theorem 6. ABC is a right triangle with right angle at C if and only if ā+ b̄ = c̄.

Proof. We get a2 + b2 − c2 = 16R(ā+ b̄− c̄) by Theorem 5. □

c

δ

b

A

ā

ā

a

C

B

ā

ā

Figure 13.
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δ

A

Figure 14.

The next theorem can be found in [1]. The same theorem was also given in a
sangaku problem proposed by Nakamura (中村幸蔵永著) in 1796 [5].

Theorem 7. For a triangle ABC with circumradius R, we have

(5) R =
16āb̄c̄

2(āb̄+ b̄c̄+ c̄ā)− ā2 − b̄2 − c̄2
.

Proof. We use the relation between the sides of ABC and the circumradius:

(6) R =
abc√

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)
.

Substituting a = 4
√
Rā, b = 4

√
Rb̄ and c = 4

√
Rc̄ in (6) and rearranging, we get

(5). □

4.3. Cyclic quadrilateral. We will give proofs of three theorems in Wasan geom-
etry. We consider a cyclic quadrilateral of side lengths a, b, c, d with circumradius
R, where we assume that the two sides of lengths a and c have no endpoints in
common (see Figure 15). The only if part of the next theorem can be found in
[2]. The theorem also follows from Theorem 5.

Theorem 8. A cyclic quadrilateral of side lengths a, b, c, d is circumscribing a
circle if and only if √

ā+
√
c̄ =

√
b̄+

√
d̄.
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Figure 15.

The next theorem can also be found in [1].

Theorem 9. For a cyclic quadrilateral of side lengths a, b, c, d and circumradius
R, we have

R =
16(

√
āb̄+

√
c̄d̄)(

√
b̄c̄+

√
d̄ā)(

√
āc̄+

√
b̄d̄)

(s− 2
√
ā)(s− 2

√
b̄)(s− 2

√
c̄)(s− 2

√
d̄)

.

where s =
√
ā+

√
b̄+

√
c̄+

√
d̄.

Proof. The theorem is proved in a similar way as Theorem 7 using Parameshvara’s
formula:

R =

√
(ab+ cd)(ac+ bd)(ad+ bc)

(−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d)
.

□

The next corollary can be found in [8] and also was given in a sangaku hung in
1865 [7].

Corollary 3. For an isosceles trapezoid of side lengths a, b, c, d with b = d and
circumradius R, we have

R =
16b̄(b̄+

√
āc̄)

4b̄− (
√
ā−

√
c̄)2

.
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[1] Aida (会田安明) ed., Sampō Tenshōhō (算法天生法) 1788, Tohoku University Digital Col-
lection.

[2] Baba (馬場正統) ed., Jimon Jitoh Daijutsu (自問自答題術) 1822, Tohoku University Digital
Collection.

[3] Q. T. Bui, A Newly Born Pair of Siblings to Archimedes’ Twins, (November 12 2011),
https://www.cut-the-knot.org/Curriculum/Geometry/ArbelosBui.shtml.

[4] C. W. Dodge, T. Schoch, P. W. Woo and P. Yiu, Those ubiquitous Archimedean circles,
Math. Mag., 72(3) (1999) 202–213.
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[8] Kawakita (川北朝鄰) ed., Sampō Senjutsu (算法浅述) 1864, Tohoku University Digital

Collection.
[9] H. Okumura, Archimedean twin circles in the arbelos, Math. Gaz., 97 (2013) 512.
[10] H. Okumura and M. Watanabe, The Archimedean circles of Schoch andWoo, Forum Geom.,

4 (2004) 27–34.
[11] Saitama prefectural library (埼玉県立図書館) ed., The Sangaku in Saitama (埼玉の算額),

1969, Saitama Prefectural Library (埼玉県立図書館).
[12] S. Takagi, The sangaku in Gifu (岐阜県の算額の解説), 1986, private publication.
[13] Toyoyoshi (豊由周齋), Tenzan (點竄), Department of Mathematics Kyoto University Digital

Library.
[14] Kururisha Sandai Shu (久留里社算題集), Tohoku University Digital Collection.
[15] Problems 2019-3, Sangaku J. Math., 3 (2019) 26–28.
[16] Problems 2017-3, Sangaku J. Math., 1 (2017) 21–23.


