Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 3 (2019), pp.51-66
Received 14 July 2019. Published on-line 04 August 2019
web: http://www.sangaku-journal.eu/
© The Author(s) This article is published with open access ${ }^{1}$.

Relationships Between Six Incircles

Stanley Rabinowitz
545 Elm St Unit 1, Milford, New Hampshire 03055, USA
e-mail: stan.rabinowitz@comcast.net
web: http://www.StanleyRabinowitz.com/

Abstract

If P is a point inside $\triangle A B C$, then the cevians through P divide $\triangle A B C$ into six smaller triangles. We give theorems about the relationship between the radii of the circles inscribed in these triangles.

Keywords. Euclidean geometry, triangle geometry, incircles, inradii, cevians.
Mathematics Subject Classification (2010). 51M04, 51-04.

1. Introduction

Japanese Mathematicians of the Edo period were fond of finding relationships between the radii of circles associated with triangles. For example, the 1781 book "Seiyo Sampo" [2, no. 84] gives the relationship $r=\sqrt{r_{1} r_{2}}+\sqrt{r_{2} r_{3}}+\sqrt{r_{3} r_{1}}$ between the radii of the circles in Figure 1 below. This result was later inscribed on an 1814 tablet in the Chiba prefecture [3, p. 30].

Figure 1.

[^0]In the spirit of Wasan, we investigate the relationships between the radii of six circles associated with a triangle and the three cevians through a point inside that triangle.

2. Notation

Let P be any point inside a triangle $A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles. Circles are inscribed in these six triangles. The six triangles and their incircles are numbered from 1 to 6 counterclockwise as shown in Figure 2, where the first triangle is formed by the lines $A P, B P$, and $B C$. The i-th triangle has inradius r_{i}, semiperimeter s_{i}, circumradius R_{i}, and area K_{i}.

Figure 2. numbering
If X and Y are points, then we use the notation $X Y$ to denote either the line segment joining X and Y or the length of that line segment, depending on the context.

3. The Orthocenter

We start with a known result [4] giving the relationship between the r_{i} when P is the orthocenter.

Theorem 3.1. If P is the orthocenter of $\triangle A B C$ (Figure 3), then $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$.

Figure 3. $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$

The following proof comes from [5].
Proof. Note that triangles 1 and 4 in Figure 3 are similar. Corresponding lengths in similar triangles are in proportion, so $r_{1} / B P=r_{4} / A P$. Triangles 2 and 5 are also similar as well as triangles 3 and 6 , giving similar proportions. Therefore

$$
\frac{r_{1}}{B P} \cdot \frac{r_{3}}{C P} \cdot \frac{r_{5}}{A P}=\frac{r_{4}}{A P} \cdot \frac{r_{6}}{B P} \cdot \frac{r_{2}}{C P}
$$

which implies $r_{1} r_{3} r_{5}=r_{2} r_{4} r_{6}$.

4. The Centroid

Next, we will consider the case when P is the centroid. We start with a few lemmas.

Lemma 4.1. If P is the centroid of $\triangle A B C$ (Figure 4), then the six triangles formed all have the same area. That is,

$$
K_{1}=K_{2}=K_{3}=K_{4}=K_{5}=K_{6} .
$$

Figure 4. six triangles have same area

Proof. If $X Y Z$ is a triangle, then $[X Y Z]$ will denote the area of that triangle. If two triangles have the same altitude, then the ratio of their areas is the same as the ratio of their bases. Thus $[P B D]=[P D C]$. Since the centroid divides a median in the ratio $2: 1$, this means that $[C E P]=\frac{1}{2}[C P B]=[C P D]$. Thus triangles 1, 2, and 3 have the same area. In the same manner, we see that all six triangles have the same area.

Lemma 4.2. If P is the centroid of $\triangle A B C$, then $s_{1}+s_{3}+s_{5}=s_{2}+s_{4}+s_{6}$.

Proof. We have the following six equations for the perimeters of the six triangles.

$$
\begin{array}{ll}
2 s_{1}=P B+P D+B D, & 2 s_{2}=P D+P C+D C, \\
2 s_{3}=P C+P E+C E, & 2 s_{4}=P E+P A+E A, \\
2 s_{5}=P A+P F+A F, & 2 s_{6}=P F+P B+F B .
\end{array}
$$

Thus $2 s_{1}+2 s_{3}+2 s_{5}-\left(2 s_{2}+2 s_{4}+2 s_{6}\right)=(B D-D C)+(C E-E A)+(A F-F B)=0$ and the lemma follows.

We can now state the relationship between the r_{i} when P is the centroid. This theorem is attributed to Reidt in [1, p. 618].

Theorem 4.1. If P is the centroid of $\triangle A B C$, then

$$
\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{5}}=\frac{1}{r_{2}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}
$$

Proof. Recall that if r, s, and K are the inradius, semiperimeter, and area of a triangle, respectively, then $r=K / s$. From Lemma 4.1, the six triangles have the same area. Call this area K. From Lemma 4.2, $s_{1}+s_{3}+s_{5}=s_{2}+s_{4}+s_{6}$. Divide both sides of this equation by K and use the fact that $1 / r_{i}=s_{i} / K_{i}$ to get the desired identity.

We note a similar result from [1, p. 618].
Theorem 4.2. If P is the centroid of $\triangle A B C$, then $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$.

5. The Circumcenter

Now we will consider the case when P is the circumcenter.
Lemma 5.1. Let P be the circumcenter of $\triangle A B C$ and let R be its circumradius. Let $\angle P A B=\angle P B A=\alpha$ and $\angle P B C=\beta$ (Figure 5). Then $R / r_{1}=\cot \alpha+\cot \frac{\beta}{2}$.

Figure 5.

Proof. Let X be the center of incircle 1 (Figure 5). Let Y be the foot of the perpendicular from X to $P B$. Since $B X$ is the bisector of $\angle P B D, \angle P B X=$ $\beta / 2$. Since $\angle B P D=\angle P A B+\angle P B A, \angle B P X=\alpha$. Then $P Y=r_{1} \cot \alpha$ and $Y B=r_{1} \cot \frac{\beta}{2}$. Since $P B=R$, this gives $R=r_{1} \cot \alpha+r_{1} \cot \frac{\beta}{2}$ and the result follows.

We now give the relationship between the r_{i} when P is the circumcenter.
Theorem 5.1. If P is the circumcenter of $\triangle A B C$ (Figure 6), then

$$
\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{5}}=\frac{1}{r_{2}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}
$$

Figure 6. $\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{5}}=\frac{1}{r_{2}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}$
Proof. Let R be the circumradius of $\triangle A B C$. Let $\angle P A B=\angle P B A=\alpha, \angle P B C=$ $\angle P C B=\beta$, and $\angle P C A=\angle P A C=\gamma$ (Figure 5). By Lemma 5.1, we have the following six relationships.

$$
\begin{array}{ll}
R / r_{1}=\cot \alpha+\cot \frac{\beta}{2}, & R / r_{2}=\cot \gamma+\cot \frac{\beta}{2} \\
R / r_{3}=\cot \beta+\cot \frac{\gamma}{2}, & R / r_{4}=\cot \alpha+\cot \frac{\gamma}{2} \\
R / r_{5}=\cot \gamma+\cot \frac{\alpha}{2}, & R / r_{6}=\cot \beta+\cot \frac{\alpha}{2}
\end{array}
$$

Adding the equations on the left gives the same result as adding the equations on the right. Dividing out the common factor R proves the theorem.

We mention the relationship between the R_{i} when P is the circumcenter.
Theorem 5.2. If P is the circumcenter of $\triangle A B C$, then $R_{1}=R_{2}$.
Proof. Let R be the circumradius of $\triangle A B C$, so that $P A=P B=P C=R$. Let $\angle B D P=\alpha$ and $\angle P D C=\beta$ (Figure 7). By the Extended Law of Sines in $\triangle P B D, R / \sin \alpha=2 R_{1}$. Similarly for $\triangle P C D, R / \sin \beta=2 R_{2}$. But since α and β are supplementary, $\sin \alpha=\sin \beta$. Therefore, $R_{1}=R_{2}$.

Figure 7. Yellow circles are congruent

6. The Incenter

Next, we will consider some cases when P is the incenter.
Theorem 6.1. If P is the incenter of $\triangle A B C$ and $\angle A B C=60^{\circ}$ (Figure 8), then

$$
\frac{1}{r_{1}}+\frac{1}{r_{4}}+\frac{1}{r_{5}}=\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{6}}
$$

Figure 8. $\frac{1}{r_{1}}+\frac{1}{r_{4}}+\frac{1}{r_{5}}=\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{6}}$
Proof. Let $\angle B A D=\angle D A C=a, \angle A B E=\angle E B C=b$, and $\angle A C F=\angle F C B=$ c, as shown in Figure 9. Note that $a+b+c=\pi / 2$. By the Extended Law of Sines in $\triangle A B C, A B / \sin 2 c=2 R$, where R is the radius of the circumcircle of $\triangle A B C$. Since the result we want to prove is invariant under scaling, without loss of generality, we may assume that $R=1 / 2$. Thus $A B=\sin 2 c$. In the same manner, we can find $A C$ and $B C$. We get the following.

$$
A B=\sin 2 c, \quad B C=\sin 2 a, \quad C A=\sin 2 b
$$

Figure 9.

Applying the Law of Sines to $\triangle A B D$ gives $B D / \sin a=A B / \sin (a+2 c)$. This allows us to compute $B D$. In a similar manner, we get the following.

$$
\begin{array}{lll}
B D=\frac{\sin a \sin 2 c}{\sin (a+2 c)}, & C E=\frac{\sin b \sin 2 a}{\sin (b+2 a)}, & A F=\frac{\sin c \sin 2 b}{\sin (c+2 b)} \\
C D=\frac{\sin a \sin 2 b}{\sin (a+2 b)}, & A E=\frac{\sin b \sin 2 c}{\sin (b+2 c)}, & B F=\frac{\sin c \sin 2 a}{\sin (c+2 a)}
\end{array}
$$

Note that $\angle B P D=a+b$. Applying the Law of Sines to $\triangle B P D$ allows us to compute the values of $P B$ and $P D$. In the same way, we can compute $P C, P E$, $P A$, and $P F$. We get the following.

$$
\begin{array}{ll}
P A=\frac{\sin c \sin 2 b}{\sin (c+a)}, & P D=\frac{\sin a \sin b \sin 2 c}{\sin (a+b) \sin (a+2 c)}, \\
P B=\frac{\sin a \sin 2 c}{\sin (a+b)}, & P E=\frac{\sin b \sin c \sin 2 a}{\sin (b+c) \sin (b+2 a)}, \\
P C=\frac{\sin b \sin 2 a}{\sin (b+c)}, & P F=\frac{\sin c \sin a \sin 2 b}{\sin (c+a) \sin (c+2 b)} .
\end{array}
$$

We now have expressions for the length of every line segment in the figure in terms of a, b, and c. Thus, the perimeters of all the triangles are known and we have expressed each of the s_{i} in terms of a, b, and c. The areas of the triangles can also be found. For example, $K_{1}=\frac{1}{2} P B \cdot B D \sin b$. Knowing all the s_{i} and K_{i} lets us find the values of all the r_{i}, since $r_{i}=K_{i} / s_{i}$.

We can plug these values for the r_{i} into the expression

$$
\frac{1}{r_{1}}+\frac{1}{r_{4}}+\frac{1}{r_{5}}-\left(\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{6}}\right)
$$

Letting $a=\pi / 2-b-c$ and $b=\pi / 6$ then gives us an expression with c as the only variable. Simplifying this expression (using a symbolic algebra system), we find that the result is 0 , thus proving our theorem.

Theorem 6.2. If P is the incenter of $\triangle A B C$ and $\angle A B C=120^{\circ}$ (Figure 10), then

$$
r_{1} r_{2} r_{3}+r_{3} r_{4} r_{5}+r_{3} r_{4} r_{6}=r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4}+r_{4} r_{5} r_{6} .
$$

This can also be written as $r_{1}+r_{2}+\frac{r_{5} r_{6}}{r_{3}}=r_{5}+r_{6}+\frac{r_{1} r_{2}}{r_{4}}$.

Figure 10. $r_{1} r_{2} r_{3}+r_{3} r_{4} r_{5}+r_{3} r_{4} r_{6}=r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4}+r_{4} r_{5} r_{6}$

Proof. This theorem can be proven using the same procedure that was used to prove Theorem 6.1. The details are omitted.

Open Question 1. Is there a simple relationship between the r_{i} that holds for all triangles when P is the incenter?

Note that there are two independent variables, a and b, and six equations representing the values of the r_{i}. Thus, variables a and b can be eliminated resulting in an equation relating the r_{i}. Since there are so many more equations than variables, multiple relationships can be found. For example, in the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle, we have a number of simple relationships between the r_{i}, as shown by the following theorem.

Theorem 6.3. If P is the incenter of $\triangle A B C$ and $\angle A B C=30^{\circ}$ and $\angle A C B=$ 60°, then the r_{i} are related to each other by each of the following equations.

$$
\begin{aligned}
\frac{2}{r_{1}^{4}}+\frac{8}{r_{3}^{4}}+\frac{6}{r_{4}^{4}}+\frac{5}{r_{5}^{4}} & =\frac{14}{r_{2}^{4}}+\frac{20}{r_{6}^{4}} \\
\frac{3}{r_{1}^{2}}+\frac{3}{r_{2}^{2}}+\frac{3}{r_{4}^{2}} & =\frac{3}{r_{3}^{2}}+\frac{2}{r_{5}^{2}}+\frac{3}{r_{6}^{2}} \\
\frac{2}{r_{1}}+\frac{2}{r_{2}}+\frac{1}{r_{5}}+\frac{1}{r_{6}} & =\frac{3}{r_{3}}+\frac{2}{r_{4}} \\
3 r_{1}+5 r_{3}+55 r_{4}+22 r_{6} & =4 r_{2}+75 r_{5} \\
2 r_{1} r_{3}+3 r_{2} r_{4}+9 r_{5} r_{1}+9 r_{6} r_{2} & =27 r_{3} r_{5}+r_{4} r_{6}
\end{aligned}
$$

Proof. For this triangle, the values of the r_{i} are as follows.

$$
\begin{aligned}
& r_{1}=\frac{1}{4}(\sqrt{2}-1)(\sqrt{3}-1), \\
& r_{2}=\frac{1}{4}(-10-7 \sqrt{2}+6 \sqrt{3}+4 \sqrt{6}), \\
& r_{3}=\frac{1}{4}(9-7 \sqrt{2}-5 \sqrt{3}+4 \sqrt{6}), \\
& r_{4}=\frac{1}{8}(-4-\sqrt{2}+2 \sqrt{3}+\sqrt{6}), \\
& r_{5}=\frac{1}{24}(-3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}), \\
& r_{6}=\frac{1}{4}(1+\sqrt{3}-\sqrt{6}) .
\end{aligned}
$$

These values can be substituted into the stated equations to verify the results (using computer simplification, as necessary).

Here is an approach that might be used to find the general relationship between the r_{i} when P is the incenter. To avoid fractions, we will replace a, b, and c from Figure 9 by $2 a, 2 b$, and $2 c$ to get Figure 11. We can express $P B$ as the sum of two lengths using circles 6 and 1 in two different ways. Equating these expressions gives the following equation.

$$
\begin{equation*}
\frac{r_{6}}{r_{1}}=\frac{\cot b+\cot (a+b)}{\cot b+\cot (b+c)} . \tag{1}
\end{equation*}
$$

Since $4 a+4 b+4 c=180^{\circ}, c=45^{\circ}-a-b$. Substitute this value of c into equation (1). Then use the addition formula for cotangent,

$$
\cot (x+y)=\frac{\cot x \cot y-1}{\cot x+\cot y}
$$

to write all trigonometric expressions in terms of $\cot a$ and $\cot b$.
In a similar manner we can form two other equations for r_{2} / r_{3} and r_{4} / r_{5}. This gives us the following three equations for $u=r_{6} / r_{1}, v=r_{2} / r_{3}$, and $w=r_{4} / r_{5}$ in terms of the two unknowns $C_{a}=\cot a$ and $C_{b}=\cot b$.

$$
\begin{aligned}
u & =\frac{\left(C_{a}-1\right)\left(C_{b}^{2}+2 C_{a} C_{b}-1\right)}{\left(C_{a}+C_{b}\right)\left(1+C_{a}-C_{b}+C_{a} C_{b}\right)}, \\
v & =\frac{\left(C_{b}-1\right)\left(C_{b} C_{a}^{2}-2 C_{a}-C_{b}\right)}{\left(C_{a}-1\right)\left(C_{a} C_{b}^{2}-2 C_{b}-C_{a}\right)}, \\
w & =\frac{\left(C_{a}+C_{b}\right)\left(1-C_{a}+C_{b}+C_{a} C_{b}\right)}{\left(C_{b}-1\right)\left(C_{a}^{2}+2 C_{a} C_{b}-1\right)} .
\end{aligned}
$$

Clearing fractions gives us three polynomial equations in the variables C_{a} and C_{b}. In theory, we should be able to eliminate C_{a} and C_{b} from these three equations, leaving us with a single equation relating u, v, and w. This equation would be

Figure 11.
the desired relationship between the r_{i}. I have not been able to perform this elimination.

The following may be a simpler question.
Open Question 2. Find the relationship between r_{1}, r_{2}, and r_{3} that holds for all triangles when P is the incenter.

Such a relationship should exist because we can express each of r_{1}, r_{2}, and r_{3} in terms of a and b. This would give us three equations in two unknowns. In theory, we should be able to eliminate a and b from these three equations, giving us a single equation relating r_{1}, r_{2}, and r_{3}.

7. Other Points

Next, we will consider other points inside triangle $A B C$. We start with an example where there is a linear relationship between the r_{i}.

Theorem 7.1. If P is a point inside $\triangle A B C$, and $\angle A B P=10^{\circ}, \angle P B C=30^{\circ}$, $\angle B C P=80^{\circ}$, and $\angle P C A=20^{\circ}$ (Figure 12), then

$$
5 r_{1}+6 r_{2}+r_{4}=r_{3}+3 r_{5}+15 r_{6} .
$$

Figure 12. $5 r_{1}+6 r_{2}+r_{4}=r_{3}+3 r_{5}+15 r_{6}$

Proof. We follow the same general procedure that was used in the proof of Theorem 6.1. Let $\angle A B E=a, \angle E B C=b, \angle B C F=c$, and $\angle F C A=d$, as shown in Figure 13. Note that $\angle B A C=\pi-a-b-c-d, \angle A F C=a+b+c$, $\angle A E B=b+c+d$, and $\angle E P C=b+c$.

Without loss of generality, we may assume that $R=1 / 2$, where R is the radius of the circumcircle of $\triangle A B C$. By the Extended Law of Sines we get the following.

$$
A B=\sin (c+d), \quad A C=\sin (a+b), \quad B C=\sin (a+b+c+d)
$$

Figure 13.

We then use the Law of Sines to get the following.

$$
\begin{aligned}
& A F=\frac{\sin (a+b) \sin d}{\sin (a+b+c)}, \quad B F=\frac{\sin (a+b+c+d) \sin c}{\sin (a+b+c)}, \\
& A E=\frac{\sin (c+d) \sin a}{\sin (b+c+d)}, \quad C E=\frac{\sin (a+b+c+d) \sin b}{\sin (b+c+d)} .
\end{aligned}
$$

Applying the Law of Sines again gives the following.

$$
\begin{array}{ll}
P B=\frac{\sin (a+b+c+d) \sin c}{\sin (b+c)}, & P E=\frac{C E \sin d}{\sin (b+c)}, \\
P C=\frac{\sin (a+b+c+d) \sin b}{\sin (b+c)}, & P F=\frac{B F \sin a}{\sin (b+c)} .
\end{array}
$$

By Ceva's Theorem, $\frac{B D}{C D}=\frac{B F \cdot A E}{A F \cdot C E}$. This gives the following.

$$
\begin{aligned}
B D & =\frac{B F \cdot A E \cdot B C}{B F \cdot A E+A F \cdot C E} \\
C D & =\frac{A F \cdot C E \cdot B C}{B F \cdot A E+A F \cdot C E}
\end{aligned}
$$

Length $P A$ is calculated using the Law of Cosines in triangle $A P B$. We get the following.

$$
P A=\sqrt{A B^{2}+P B^{2}-2 \cdot A B \cdot P B \cdot \cos a} .
$$

To find the length of $P D$ without introducing another square root, we can apply Menelaus' Theorem to transversal $B P E$ in $\triangle A D C$. We get the following.

$$
P D=\frac{P A \cdot B D \cdot C E}{B C \cdot A E} .
$$

We now have expressions for the length of every line segment in the figure in terms of a, b, c, and d. We can therefore calculate all the s_{i}, K_{i}, and r_{i}.

We can plug these values for the r_{i} into the expression

$$
5 r_{1}+6 r_{2}+r_{4}-\left(r_{3}+3 r_{5}+15 r_{6}\right)
$$

Letting $a=10^{\circ}, b=30^{\circ}, c=80^{\circ}$, and $d=20^{\circ}$ gives us an expression with no variables. Simplifying this expression (using a symbolic algebra system), we find that the result is 0 , thus proving our theorem.

Sometimes the relationship between the r_{i} is more regular as in the following two theorems. The proofs are similar to the proof of Theorem 7.1. When the formulas for the lengths of the radii previously found are applied to the equation to be proved, the result is a trigonometric equation that can be proven to be an identity using symbolic algebra computation. The details are omitted.

Theorem 7.2. If P is a point inside $\triangle A B C$, and $\angle P B A, \angle P B C, \angle P C B$, and $\angle P C A$ are as shown in Figure 14, then

$$
\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{1}{r_{2}}+\frac{1}{r_{5}}+\frac{1}{r_{6}}
$$

Figure 14. $\frac{1}{r_{1}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{1}{r_{2}}+\frac{1}{r_{5}}+\frac{1}{r_{6}}$
Theorem 7.3. If P is a point inside $\triangle A B C$, and $\angle P B A, \angle P B C, \angle P C B$, and $\angle P C A$ are as shown in any of the triangles depicted in Figure 15, then

$$
\frac{1}{r_{1}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}=\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{5}}
$$

Note that in each of these examples, t is an arbitrary parameter.

The reader may be wondering how I came up with these results. Here is the procedure I used.
Let $f(r)$ denote some function of r such as r, r^{2}, or $1 / r$. I varied all combinations of a, b, c, and d (see Figure 13) through all multiples of 1° and calculated $f\left(r_{1}\right)$ through $f\left(r_{6}\right)$. Using the Mathematica ${ }^{\circledR}$ function FindIntegerNullVector, I looked for any linear relationships between these six numbers. If a linear relationship existed which involved all six numbers, I logged the quadruple $\langle a, b, c, d\rangle$ along with the coefficients of the relationship into a database. After all quadruples were examined, I looked at all pairs of entries in the database that had the same set of coefficients. If $Q_{1}=\left\langle a_{1}, b_{1}, c_{1}, d_{1}\right\rangle$ and $Q_{2}=\left\langle a_{2}, b_{2}, c_{2}, d_{2}\right\rangle$ were two such quadruples, I then formed the quadruple Q_{3} such that $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$ formed an arithmetic progression in each component. Then I examined Q_{3} to see if it also satisfied the same linear combination. If it did, then this suggested a oneparameter family of solutions (which had to be confirmed).

Note that many solutions were found for various functions f, but no one-parameter families of solutions were found except when $f(r)=1 / r$. It is not clear why this should be the case.

Figure 15. $\frac{1}{r_{1}}+\frac{1}{r_{4}}+\frac{1}{r_{6}}=\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{5}}$
We note several related results that hold whenever P is an arbitrary point inside $\triangle A B C$.

Theorem 7.4. If P is any point inside $\triangle A B C$ (Figure 16), then $K_{1} K_{3} K_{5}=$ $K_{2} K_{4} K_{6}$.

Figure 16. $K_{1} K_{3} K_{5}=K_{2} K_{4} K_{6}$

Proof. Let $\angle B P D=\alpha, \angle D P C=\beta$, and $\angle C P E=\gamma$. Noting that vertical angles are equal and using the formula for the area of a triangle in terms of two sides and the sine of the included angle, we have the following six equations.

$$
\begin{array}{ll}
2 K_{1}=P B \cdot P D \cdot \sin \alpha, & 2 K_{2}=P D \cdot P C \cdot \sin \beta, \\
2 K_{3}=P C \cdot P E \cdot \sin \gamma, & 2 K_{4}=P E \cdot P A \cdot \sin \alpha, \\
2 K_{5}=P A \cdot P F \cdot \sin \beta, & 2 K_{6}=P F \cdot P B \cdot \sin \gamma
\end{array}
$$

Multiplying gives

$$
8 K_{1} K_{3} K_{5}=(P B \cdot P D \cdot \sin \alpha)(P C \cdot P E \cdot \sin \gamma)(P A \cdot P F \cdot \sin \beta)
$$

and

$$
8 K_{2} K_{4} K_{6}=(P D \cdot P C \cdot \sin \beta)(P E \cdot P A \cdot \sin \alpha)(P F \cdot P B \cdot \sin \gamma)
$$

The right sides of both equations are equal, so $K_{1} K_{3} K_{5}=K_{2} K_{4} K_{6}$.
Theorem 7.5. [6, p. 43] If P is any point inside $\triangle A B C$, then

$$
\frac{1}{K_{1}}+\frac{1}{K_{3}}+\frac{1}{K_{5}}=\frac{1}{K_{2}}+\frac{1}{K_{4}}+\frac{1}{K_{6}} .
$$

Open Question 3. Is there a simple relationship between the r_{i} that holds for all triangles and all points P inside the triangle?

A simpler question may be the following.
Open Question 4. Is there a simple relationship between the r_{i} that holds for all points P inside an equilateral triangle?

8. Opportunities for Future Research

When the three cevians through a point inside a triangle are extended to the cirumcircle, other circles can be formed. Figure 17 shows some examples. Each yellow circle associated with the triangle on the left is the incircle of a region bounded by two cevians and the circumcircle. Each green circle associated with the triangle on the right is the incircle of a region bounded by one side of the triangle, one cevian, and the circumcircle.

Figure 17. sets of incircles tangent to circumcircle of $\triangle A B C$

Open Question 5. Investigate the relationship between the radii in each set of six incircles shown in Figure 17.

We can also form regions bounded by the incircle of $\triangle A B C$. Figure 18 shows some examples. Each red circle associated with the triangle on the left is the incircle of a region formed by two cevians and the incircle of $\triangle A B C$. Each blue circle associated with the triangle on the right is the incircle of a region formed by one side of the triangle, one cevian, and the incircle of $\triangle A B C$.

Figure 18. sets of incircles tangent to incircle of $\triangle A B C$
Open Question 6. Investigate the relationship between the radii in each set of six incircles shown in Figure 18.
Open Question 7. For a fixed triangle $A B C$, characterize those points P such that $r_{1}+r_{3}+r_{5}=r_{2}+r_{4}+r_{6}$.

There are many such points. Some of them look like they lie on a straight line.
We have found relationships between the r_{i} when P is the orthocenter, circumcenter, centroid, and incenter.
Open Question 8. Investigate the relationship between the r_{i} when P is some other notable point, such as the nine-point center, the Nagel Point, or the Gergonne Point.

References

[1] Antoine Dalle, 2000 Théorèmes et Problèmes de Géométrie avec Solutions, 8th edition, Wesmael-Charlier, Bruxelles, 1961.
[2] Teisi Fujita, Seiyō Sampō, 1781. Tohoku University Digital Collection. https://www.i-repository.net/il/meta_pub/G0000398tuldc_4100001974
[3] Hidetosi Fukagawa and Dan Pedoe, Japanese Temple Geometry Problems, Winnipeg, Canada, Charles Babbage Research Center, 1989.
[4] Antonio Gutierrez, Geometry Problem 79, 2008, Geometry from the Land of the Incas, http: //www.gogeometry.com/problem/p079_triangle_similarity_altitude_circle.htm
[5] Hexram, Solution to Geometry Problem 79, 2012, Geometry from the Land of the Incas, https://gogeometry.blogspot.com/2008/05/elearn-geometry-problem-79.html.
[6] Victor Mayer Amédée Mannheim, Transformation des propiétés métriques des figures à l'aide de la théorie des polaires réciproques, Mallet-Bachelier, Paris, 1857. https://books.google.com/books?id=B-gDAAAAQAAJ

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

