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1. Introduction

Let α, β and γ be the semicircles of diameters AO, BO and AB, respectively for a
point O on the segment AB constructed on the same side of AB, where |AO| = 2a
and |BO| = 2b. The area surrounded by the three semicircles is called an arbelos,
and the perpendicular to AB at O is called the axis. The axis divides the arbelos
into two curvilinear triangles with congruent incircles, which are called the twin
circles of Archimedes and have radius rA = ab/(a+ b). Circles of the same radius
are said to be Archimedean (see Figure 1) [2].
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In this paper, we consider the following problem proposed by Ootoba (大鳥羽源吉
守敬), which can be found in the sangaku hung in 1853 at Takenobu Inari Shrine
(武信稲荷神社) in Kyoto [6] (see Figure 2).

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Problem 1. Let CD be the tangent of γ parallel to AB such that DA and BC
are the tangents of γ at the points A and B, respectively. Show that the incircle
of the curvilinear triangle made by CD, the remaining tangent of α from D and
the axis is Archimedean.

Figure 3.

The original figure of the problem does not explicitly describe an arbelos as shown
in Figure 3. There are several problems involving the twin circles of Archimedes
in Wasan geometry [1], [3], [4]. On the other hand, it is very rare to find a
problem involving an Archimedean circle different from the mate of the twin
circles. Furthermore it seems that the Archimedean circle in the problem have not
been considered elsewhere until today except for [14], which gives a generalization
of the problem. In this paper we give another generalization of the problem, and
give infinitely many Archimedean circles.

2. Generalization

We generalize the problem. Let H ̸= A be a point lying on the same side of AB
as α such that the line AH is the common tangent of α and γ at A and |AH| = h
(see Figure 4). We assume that the remaining tangent of α (resp. γ) from H
touches α (resp. γ) at a point P (resp. Q), εH is the circle of radius e touching α
and γ at P and Q, respectively. The incircle of the curvilinear triangle made by
the lines HP , HQ and the axis is denoted by δH . We use a rectangular coordinate
system with origin O such that the farthest point on α from AB has coordinates
(a, a). The problem is obtained in the case in which Q coincides with the farthest
point on γ from AB in the next theorem:
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Theorem 1. The circle δH is Archimedean.

Proof. We assume that ∠AHP = 2θ1, ∠PHQ = 2θ2. Then we have tan θ1 = a/h,
tan θ2 = e/h and tan(θ1 + θ2) = (a + b)/h. Eliminating θ1 and θ2 from the three
equations, and solving the resulting equation for e, we get

(1) e =
bh2

j2
, where j =

√
a(a+ b) + h2.

Since the point P is the reflection of the point A in the line passing through H
and the center of α, it has coordinates

(2) (xp, yp) =

(
2a3

k2
,
2a2h

k2

)
, where k =

√
a2 + h2.

Let (xe, ye) be the coordinates of the center of εH . Then we have (xe − xp)
2 +

(ye − yp)
2 = e2 and (xe − 2a)2 + (ye − h)2 = e2 + h2, where notice that if (xe, ye)

are the coordinates of the reflection of the center of εH in the line HP , then they
also satisfy the two equations. Solving the two equations for xe and ye, we get

(3) (xe, ye) =

(
2a2(a+ b)− bh2

j2
,
2a(a+ b)h

j2

)
or

(xe, ye) =

(
2a4(a+ b) + a2(2a− b)h2 + bh4

k2j2
, 2ah

(
2a

k2
− a+ b

j2

))
.

While we have

2a(a+ b)h

j2
− 2ah

(
2a

k2
− a+ b

j2

)
=

4abh3

k2j2
> 0.

Therefore we get (3). If r is the radius of δH , then e/(2a− xe) = r/(2a− r) holds
and the last equation implies r = rA by (1) and (3). □

Notice that k is the distance between the point H and the center of α. Since
there are infinite many choices of H, we get infinitely many Archimedean circles
touching the axis from the side opposite to the point B. Similar infinitely many
Archimedean circles are also obtained from points on the common tangent of β
and γ at B.

Proposition 1. The line PQ passes though a fixed point on AB.

Proof. The point Q is the reflection of the point A in the line passing through H
and the center of γ. Therefore it has coordinates

(4)

(
2a(a+ b)2 − 2bh2

l2
,
2(a+ b)2h

l2

)
, where l =

√
(a+ b)2 + h2.

Therefore by (2) and (4), we see that the line PQ passes through the point of
coordinates (2a2/(2a+ b), 0). □

Notice that l is the distance between H and the center of γ.
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3. Points determining the same Archimedean circle

For the Archimedean circle δH , there are two tangents of α (also γ) and δH in
general, which implies that there is a point H ′ ̸= H on the line AH such that the
circle δH′ coincides with δH . In this section we consider a relationship between
such two points determining the same Archimedean circles.

The tangent of α from B also touches the Archimedean incircle of the curvilinear
triangle made by α, γ and the axis [2]. Hence this circle coincides with the circle
δH if H lies on this tangent (see Figure 5). In this case we explicitly denote the
point H by H0. Since the point of tangency of α and the tangent has coordinates
(2ab/t, 2a

√
(a+ b)b/t), where t = a+ 2b [9], the point H0 has y-coordinate

(5) h0 = a

√
a+ b

b
.

The circles δH0 and εH0 coincide.

Theorem 2. Let yd be the y-coordinate of the center of the circle δH . Then

(6) yd =
a2

h
+

hrA
a

holds, and δH is closest to the line AB if and only if H = H0.

Proof. Recall that if two externally touching circles of radii r1 and r2 touch a line
at two points S and T , then |ST | = 2

√
r1r2 holds. From e/(h− ye) = rA/(h− yd)

we get (6) by (1) and (3). Then we get

yd ≥ 2

√
a2

h

hrA
a

= 2
√
arA,

where notice that 2
√
arA equals the y-coordinate of the center of the circle δH0 . □

The next theorem gives a relationship between two points determining the same
Archimedean circle touching the axis (see Figure 6).
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Theorem 3. Let H1 and H2 be two distinct points different from A on the half
line with initial point A passing through H0. Then the circles δH1 and δH2 coincide
if and only if the two points are the inverse to each other in the circle of center
A and radius h0.

Proof. Let hi = |AHi|. The two circles δH1 and δH2 coincide if and only if

0 =

(
a2

h1

+
h1rA
a

)
−

(
a2

h2

+
h2rA
a

)
=

(h1 − h2)(bh1h2 − a2(a+ b))

(a+ b)h1h2

by (6), which is equivalent to h1h2 = h2
0 by (5). □

4. Circles of radius b touching the axis

The radius of the excircle of the triangle made by the lines HP , HQ and the axis
touching the axis from the side opposite toH equals b by the similarity. We denote
this circle by βH . Notice that H is the external center of similitude of βH and
δH . Let yb be the y-coordinate of the center of βH . From b/(h− yb) = rA/(h− yd)
with (6), we have

(7) yb =
a(a+ b)

h
.

Let C1 and C2 be circles of radii r1 and r2, respectively. If d is the distance
between their centers, the inclination of the two circles is defined by

I(C1, C2) =
r21 + r22 − d2

2r1r2
.

The two circles touch externally, are orthogonal, touch internally, according as
I(C1, C2) = −1, I(C1, C2) = 0, I(C1, C2) = 1. The next theorem is obtained by
(5) and (7) (see Figure 7).
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Theorem 4. The following statements are true.

(i) I(βH , γ) = 1− h2
0

2h2
.

(ii) The circles βH and γ touch externally if and only if h = h0/2.
(iii) The circles βH and γ are orthogonal if and only if h = h0/

√
2.
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5. The case H = A

We consider the case in which the point H coincides with the point A by the
definition of division by zero [7]:

(8)
z

0
= 0 for any real number z.

We now assume that h = 0 and δH is the Archimedean circle of center (rA, yd)
satisfying (6). The points P and Q have coordinates (2a, 0) by (2) and (4), i.e.,
they coincide with the point A. While the circle εH has center of coordinates
(2a, 0) and radius 0 by (3) and (1). Therefore εH also coincides with A. While
yd = 0 by (6) and (8). Therefore the circle δH touches the axis at the point O
(see Figure 8). If H2 is the inverse of H in the circle of center A and radius h0,
then h2 = h2

0/h implies h2 = 0 by (8), where h2 = |AH2|. Hence H2 also coincides
with A.

If Theorem 4(i) holds in this case, it implies I(βH , γ) = 1 by (8), i.e., βH touches
γ internally. Therefore βH touches the axis at O. The same conclusion can also
be obtained from (7) by (8). This implies that the external center of similitude
of the circles βH and δH coincides with the point H. Notice that all the results
in this section are consistent. For more applications of division by zero to Wasan
geometry see [5], [8], [10, 11, 12], [13, 15].
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