
Sangaku Journal of Mathematics (SJM) c⃝SJM
ISSN 2534-9562
Volume 4 (2020), pp. 28-30
Received 15 January 2020. Published on-line 17 January 2020
web: http://www.sangaku-journal.eu/
c⃝The Author(s) This article is published with open access1.

A remark on an Archimedean square of a
triangle associated with an arbelos

∗Hiroshi Okumura and ∗∗Ercole Suppa
∗Maebashi Gunma 371-0123, Japan

e-mail: hokmr@yandex.com
∗∗Via B. Croce 54, 64100 Teramo, Italia

e-mail: ercolesuppa@gmail.com

Abstract. We consider squares with Archimedean incircle arising from a triangle
associated with an arbelos.

Keywords. arbelos, Archimedean square.

Mathematics Subject Classification (2010). 51M04, 51M15.

1. Introduction

We consider an arbelos formed by three semicircles α, β and γ with diameters
AO, BO and AB, respectively for a point O on the segment AB, where |AO| = 2a
and |BO| = 2b (see Figure 1). Circles of radius rA = ab/(a + b) are said to be
Archimedean. The radical axis of α and β is called the axis, and the incircle of
the arbelos is denoted by δ.
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Figure 2.

For a triangle EFG, let PQRS be the square such that the points P and Q
lie on the sides GE and EF , respectively, and the side RS lies on the line FG
(see Figure 2). We call PQRS the square of EFG on FG. If |PQ| = 2rA, the
square PQRS is said to be Archimedean. The incircle of an Archimedean square
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which permits any use, distribution, and reproduction in any medium, provided the original
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is Archimedean. In this article we construct several triangles whose squares on
the base are Archimedean.

2. Result

Theorem 1. For a triangle EFG, let x and y be the length of the base FG and the
height, respectively. Then the square of EFG on FG has side length xy/(x+ y).
Therefore the square is Archimedean if and only if

(1)
xy

x+ y
= 2rA.

Proof. If s is the side length of the square of EFG on FG, we get (y− s)/s = y/x
by the similar triangles EFG and EQP . This implies s = xy/(x+ y). □

Table 1 shows several pairs of x and y satisfying (1). We now construct
triangles with base length x and height y for x and y in the table, where the case
1 is easy since |AO| = 2a and |BO| = 2b. We use a rectangular coordinate system
with origin O such that the farthest point on α from AB has coordinates (a, a).

Case x y
1 2a 2b

2 2(a+ b)
2ab(a+ b)

a2 + ab+ b2

3 a+ b
2ab(a+ b)

a2 + b2

4 a, (a > b) 2ab
a− b

5 4rA 4rA

Table 1. Pairs satisfying (1).
A=GB=F O
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E

Figure 3.

2.1. Case 2 x = 2(a+ b), y = 2ab(a+ b)/(a2 + ab+ b2). The circle δ has radius
r = ab(a+ b)/d and center of coordinates (ab(b−a)/d, 2r), where d = a2+ab+ b2.
Therefore if E lies on the diameter of δ parallel to AB, and F = B and G = A,
the square of EFG on FG is Archimedean. The case in which E coincides with
the center of δ can be found in [1]. If E coincides with one of the endpoints of the
diameter of δ parallel to AB, one of the sides of the square of EFG on FG lies
on the axis (see Figure 3).

2.2. Case 3 x = a+ b, y = 2ab(a+ b)/(a2 + b2). If E is the point of tangency of
γ and δ, it has coordinates (2j(b− a), 2j(a+ b)), where j = ab/(a2 + b2) [2].
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Therefore if G and F are the centers of α and β, the square of EFG on FG is
Archimedean (see Figure 4). Also if F is the center of γ and G = A, the square of
EFG on FG is Archimedean, and one of the sides of the square lies on the axis
(see Figure 5).

2.3. Case 4 x = a > b, y = 2ab/(a − b). Assume a > b. Let E be the point of
intersection of AB and the external common tangent of α and β, which has an
equation (a − b)x − 2

√
aby + 2ab = 0 [3], [4]. If F is the orthogonal projection

of the farthest point on α from AB to the axis, and G = O, then |FG| = a and
|GE| = 2ab/(a−b). Therefore the square of EFG on FG (or GE) is Archimedean
(see Figure 6).
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2.4. Case 5 x = 4rA, y = 4rA. Let ε be the circle touching γ internally and AB
at O. Then ε has radius 2rA [4]. Therefore if FG is the orthogonal projection of
ε to AB and E is the farthest point on ε from AB, then |FG| = |EO| = 4rA.
Hence the square of EFG on FG is Archimedean (see Figure 7). The incircle of
the square coincides with Bankoff circle.
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