Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 4 (2020), pp.41-44
Received 7 February 2020. Published on-line 17 February 2020.
web: http://www.sangaku-journal.eu/
©The Author(s) This article is published with open access ${ }^{1}$.

Solution to Problem 2019-4

Huvent Géry
Lycee Faidherbe (Faidherbe high-school), 59000 Lille, France
e-mail: g.huvent@wanadoo.fr
web: http://gery.huvent.pagesperso-orange.fr

Abstract. Using similar triangles, we solve the problem 2019-4.
Keywords. square, incircle, similar triangles.
Mathematics Subject Classification (2010). 01A27, 51M04.

1. Introduction

We solve the following problem (see Figure 1).
Problem. For a square $P_{1} P_{2} P_{3} P_{4}$, let $Q_{i}(i=1,2,3,4)$ be a point on the side $P_{i} P_{i+1}$ such that $Q_{1} Q_{3} \perp Q_{2} Q_{4}$ where the subscripts are taken modulo 4. Let r_{i} be the radius of the circle lying inside of the square and touching $P_{i} P_{i \pm 1}$ and $Q_{i} Q_{i+2}$. Prove or disprove $r_{1}+r_{3}=r_{2}+r_{4}$.

Figure 1.

[^0]
2. Solution

Without loss of generality, we may assume that the side of the square is the unit. Firstly we consider the special case where $Q_{1} Q_{3}$ and $P_{1} P_{4}$ are parallel (see Figure $2)$. In this case we obviously have $r_{1}+r_{3}=1 / 2=r_{2}+r_{4}$.

Figure 2. Case $Q_{1} Q_{3}$ and $P_{1} P_{4}$ being parallel
Secondly, assume that $Q_{1} Q_{3}$ and $P_{1} P_{4}$ are not parallel. We denote the point of intersection of $Q_{i} Q_{i+2}$ and $P_{i} P_{i+3}$ by R_{i}. Without loss of generality, we may assume that P_{1} and R_{1} are on the same side of the line $P_{3} P_{4}$. In this case P_{i} and R_{i} are on the same side of the line $P_{i+2} P_{i+3}$ where the subscripts are taken modulo 4. If P_{1} and R_{1} are on not on the same side of the line $P_{3} P_{4}$, just reflect the figure through a line parallel to $P_{1} P_{2}$ and rename several symbols (see Figure 3). If $\left(Q_{1}, Q_{3}\right)=\left(P_{1}, P_{3}\right)$, we get $\left(Q_{2}, Q_{4}\right)=\left(P_{2}, P_{4}\right)$. Therefore we have $r_{1}+r_{3}=0=r_{2}+r_{4}$.

Figure 3. Two symmetric configurations
We now assume $Q_{1} \neq P_{1}$. Let $\alpha=P_{4} Q_{3}$ and $a=P_{4} R_{1}$. Then the inradius of the right-angled triangle $P_{4} R_{1} Q_{3}$ equals $r=\frac{1}{2}\left(a+\alpha-\sqrt{a^{2}+\alpha^{2}}\right)$. By the similarly in Figure 4, we get

$$
\frac{r}{a-r}=\frac{r_{1}}{a-1+r_{1}} .
$$

Solving for r_{1}, we get

$$
\begin{equation*}
r_{1}=\frac{(a-1) r}{a-2 r}=\frac{a-1}{2} \frac{a+\alpha-\sqrt{a^{2}+\alpha^{2}}}{a-\left(a+\alpha-\sqrt{a^{2}+\alpha^{2}}\right)}=\frac{a-1}{2 a}\left(\alpha-a+\sqrt{a^{2}+\alpha^{2}}\right) . \tag{1}
\end{equation*}
$$

The triangles $P_{4} R_{1} Q_{3}$ and $P_{2} R_{3} Q_{1}$ are similar. Therefore

$$
\frac{r_{3}}{r_{1}}=\frac{1-\alpha}{P_{1} Q_{1}} .
$$

By similar triangles $P_{4} R_{1} Q_{3}$ and $P_{1} R_{1} Q_{1}$ we get

$$
\frac{\alpha}{P_{1} Q_{1}}=\frac{a}{a-1} .
$$

So we deduce that

$$
r_{3}=\frac{1-\alpha}{2 \alpha} \frac{a}{a-1} r_{1}=\frac{1-\alpha}{2 \alpha}\left(\alpha-a+\sqrt{a^{2}+\alpha^{2}}\right) .
$$

From (1), we get

$$
\begin{equation*}
r_{1}+r_{3}=\frac{a-\alpha}{2 a \alpha}\left(\alpha-a+\sqrt{a^{2}+\alpha^{2}}\right) . \tag{2}
\end{equation*}
$$

Figure 4.
Let $b=P_{1} R_{2}$ and $\beta=P_{1} Q_{4}$. Similarly we get

$$
r_{2}+r_{4}=\frac{b-\beta}{2 b \beta}\left(\beta-b+\sqrt{b^{2}+\beta^{2}}\right) .
$$

Figure 5.
Since the lines $Q_{1} Q_{3}$ and $Q_{2} Q_{4}$ are perpendicular, the triangles $P_{4} R_{1} Q_{3}$ and $P_{1} R_{2} Q_{4}$ are similar (see Figure 5). So we deduce that

$$
\frac{a}{\alpha}=\frac{b}{\beta} .
$$

Substituting $a=\alpha b / \beta$ in (2), we get

$$
\begin{aligned}
r_{1}+r_{3} & =\frac{\alpha \frac{b}{\beta}-\alpha}{2 \alpha \frac{b}{\beta} \alpha}\left(\alpha-\alpha \frac{b}{\beta}+\sqrt{\left(\alpha \frac{b}{\beta}\right)^{2}+\alpha^{2}}\right) \\
& =\frac{b-\beta}{2 \alpha b}\left(\alpha-\alpha \frac{b}{\beta}+\frac{\alpha}{\beta} \sqrt{b^{2}+\beta^{2}}\right)=r_{2}+r_{4}
\end{aligned}
$$

Notice that the above discussion is also true in the case $Q_{3}=P_{3}$.
Assume that $Q_{1} Q_{3}$ and $P_{1} P_{4}$ are not parallel and P_{1} and R_{1} lie on the same side of $P_{3} P_{4}$. We define $r_{1}^{(i)}$ as follows: $r_{1}^{(4)}$ is the inradius of the triangle $P_{1} Q_{1} R_{1}, r_{1}^{(2)}$ is the radius of the excircle of $P_{1} Q_{1} R_{1}$ touching $R_{1} P_{1}$ from the side opposite to Q_{1}, $r_{1}^{(3)}$ is the radius of the excircle of $P_{1} Q_{1} R_{1}$ touching $P_{1} Q_{1}$ from the side opposite to $R_{1}, r_{1}^{(1)}$ is the radius of the excircle of $P_{1} Q_{1} R_{1}$ touching $Q_{1} R_{1}$ from the side opposite to P_{1}. Similarly the radii $r_{i}^{(j)}(i=2,3,4),(j=1,2,3,4)$ are defined (see Figure 6). Since the triangles $P_{i} Q_{i} R_{i}$ are all similar, we get the next theorem.
Theorem 1.

$$
r_{1}^{(i)}+r_{3}^{(i)}=r_{2}^{(i)}+r_{4}^{(i)} \quad \text { for } \quad i=1,2,3,4
$$

Figure 6.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

