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1. The problem

We denote the semi-major axis and semi-minor axis of the ellipse by a and b
respectively. If r is the radius of the small circle in the Figure 1 , then

r2 − 2r
(√

ab+ a+ b
)
+ ab = 0.

Figure 1.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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54 Solution to 2020-1 Problem 9

2. Notations

We use a rectangular coordinates system with origin O such as the ellipse has

equation x2

a2
+ y2

b2
= 1. Let A, B, S be the points with coordinates (a, 0), (0, b) and

(a, b) respectively. If M is a point on the ellipse, we denote by TM the tangent to
the ellipse at the point M . If M is a point on the quarter ellipse that contains A
and B and if M is distinct from A and B, we denote the intersection of TM and
TA (respectively TB) by Q (respectively P ) (see Figure 2).
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Figure 2.

We may assume that P and Q have coordinates

P : (a− p, b) and Q : (a, b− q)

for some reals numbers p ∈ ]0, a[ and q ∈ ]0, b[.

3. A condition for PQ to be the tangent to the ellipse at the
point M

We look after a condition concerning p and q in order that the line PQ is the
tangent TM at the ellipse. Let (xM , yM) be the coordinates of M , then TM has
equation

xxM

a2
+

yyM
b2

= 1

(cf ref [1]). The points P and Q lie on TM if and only if{ (a−p)xM

a2
+ yM

b
= 1

xM

a
+ (b−q)yM

b2
= 1.

Solving for xM and yM , we find

(1) xM =
a2q

ab− (a− p) (b− q)
and yM =

b2p

ab− (a− p) (b− q)
.

The condition of tangency is obtained by writing that M is on the ellipse.

x2
M

a2
+

y2M
b2

=
a2q2 + b2p2

(ab− (a− p) (b− q))2
= 1.

Thus we have a2q2+b2p2 = ((a− p) (b− q)− ab)2. We expand the right-hand side
of this equality, and then we get

pq (2ab− 2aq − 2bp+ pq) = 0.
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From the previous formula we deduce the condition of tangency:

(2) b− q =
bp

2a− p
.

We now assume that this condition holds. In this case, the lines PQ and TM are
identical.

4. The incircle of the triangle SPQ

Let C be the incircle of the triangle SPQ, ρ the inradius and N the point where
C touches the line PQ (see Figure 3).

Figure 3.

The line PQ has equation

q (a− x) + p (b− y) = pq.

The vector with coordinates (q, p) is a normal vector to TM , and the coordinates
of the center of C are (a− ρ, b− ρ). Then the normal line to C at N has equation

p (a− x)− q (b− y) = (p− q) ρ.

Because N lies at the intersection of this normal line and the tangent line TM , the
coordinates of N are the solutions of{

p (a− x)− q (b− y) = (p− q) ρ
q (a− x) + p (b− y) = pq

solving for x− a and y − a, we get

(3) xN = a− p

p2 + q2
(q (q − ρ) + pρ) and yN = b− q

p2 + q2
(p (p− ρ) + qρ) .

Since the inradius of the right-angled triangle SPQ is

ρ =
p+ q −

√
p2 + q2

2
=

pq

p+ q +
√
p2 + q2

,

then

2ρ = p+ q −
√

p2 + q2(4)
pq

ρ
= p+ q +

√
p2 + q2.(5)



56 Solution to 2020-1 Problem 9

Adding (4) and (5), we get

(6) 2ρ+
pq

ρ
= 2 (p+ q) .

Solving (6) for q, we get

q = 2ρ
p− ρ

p− 2ρ
and q − ρ =

pρ

p− 2ρ
.

From the previous equality, we deduce that

(7) q (q − ρ) + pρ = 2ρ
p− ρ

p− 2ρ
× pρ

p− 2ρ
+ pρ =

pρ (p2 − 2pρ+ 2ρ2)

(p− 2ρ)2

and with (4), we get

(8)
√

p2 + q2 = p+ q − 2ρ = p− ρ+
pρ

p− 2ρ
=

p2 − 2pρ+ 2ρ2

p− 2ρ
.

Substituting (7) and (8) in (3), we get

(9) xN = a− p(
p2−2pρ+2ρ2

p−2ρ

)2 (pρ (p2 − 2pρ+ 2ρ2)

(p− 2ρ)2

)
= a− p2ρ

p2 − 2pρ+ 2ρ2
.

and similarly yN = b− q2ρ
q2−2qρ+2ρ2

(just permute a with b and p with q ).

5. The exact value of r

Rewrite xM as xM = a− ap(b−q)
ab−(a−p)(b−q)

, with (2) we get

(10) xM = a−
ap bp

2a−p

ab− (a− p) bp
2a−p

= a− p2a

p2 − 2pa+ 2a2
.

If the circle C is the small circle in Figure 1, then M = N and ρ=r. Using (9)
and (10) and replacing ρ by r gives the following equivalence :

xM = xN ⇐⇒ a (p2 − 2pr + 2r2) = r (p2 − 2pa+ 2a2)
⇐⇒ (r − a) (2ar − p2) = 0.

Then, because r ̸= a, we get

(11) p2 = 2ar and by similarly q2 = 2br.

We can deduce that

r =
p+ q −

√
p2 + q2

2
=

√
2ar +

√
2br −

√
2r (a+ b)

2
.

Thus

(12) r =

(√
a+

√
b−

√
a+ b

)2
2

.

Using this value of r to simplify r2 − 2r
(√

ab+ a+ b
)
+ ab shows that

r2 − 2r
(√

ab+ a+ b
)
+ ab = 0,
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thus proving Problem 9.

The second solution of r2 − 2r
(√

ab+ a+ b
)
+ ab = 0 is R =

(
√
a+

√
b+

√
a+b)

2

2
. In

section 6, we will find the geometrical significance of R.

6. The second solution

We now assume that the incircle C of the triangle SPQ is the small circle in Figure
1. In this case with (11) and (12), we get

(13) p =
√
2ar = a−

√
a
(√

a+ b−
√
b
)
, q = b−

√
b
(√

a+ b−
√
a
)

and

p2 − 2ap+ 2a2 = 2a
√
a+ b

(√
a+ b−

√
b
)
.

Let T be the point where the circle C touches the ellipse. From theses equalities
and (10), we deduce that the coordinates of T are

(14) xT = a− p2a

p2 − 2ap+ 2a2
=

2a2 (a− p)

p2 − 2ap+ 2a2
=

a
√
a√

a+ b
and yT =

b
√
b√

a+ b
.

Let Ω be the point with coordinates (−a+R,−b+R). The coordinates of the
center C of C are (a− r, b− r), then from the value of r and R

r = a+ b+
√
a
√
b−

(√
a+

√
b
)√

a+ b

R = a+ b+
√
a
√
b+

(√
a+

√
b
)√

a+ b

we have

ΩT 2 − CT 2 = (−a+R− xT )
2 − (a− r − xT )

2 + (−b+R− yT )
2 − (b− r − yT )

2

= (R + r − 2a) (R− r − 2xT ) + (R + r − 2b) (R− r − 2yT ) .

Basic calculations give

R + r − 2a = 2
√
b
(√

a+
√
b
)

, R + r − 2b = 2
√
a
(√

a+
√
b
)

R− r − 2xT = 2
√
b√

a+b

(
b+ a+

√
a
√
b
)

, R− r − 2yT = 2
√
a√

a+b

(
b+ a+

√
a
√
b
)

thus

ΩT 2 − CT 2 = 4
(√

a+
√
b
)(

b+ a+
√
a
√
b
)√

a+ b

and

R2 − r2 = (R− r) (R + r) = 4
(√

a+
√
b
)(

b+ a+
√
a
√
b
)√

a+ b.

The point T lies on the circle C, so CT 2 = r2. We thus deduce that ΩT 2 = R2

and then the circle C ′ with center Ω and radius R is tangent to the ellipse at T .
Obviously this circle is also tangent to the lines x = −a and y = −b (see Figure
4).
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Figure 4.

7. An optimization problem

We prove the following theorem.

Theorem 1. When M lies on the arc
⌢

AB of the ellipse, the maximum value of
the inradius ρ of the triangle SPQ is r.

Proof. The condition of tangency (2) shows that q(p) = b− bp
2a−p

and ρ = 1
2
(p+q−√

p2 + q2) are continuous functions on [0, a]. The extreme value theorem states
that ρ obtains a maximum and a minimum value on [0, a]. When p = 0 or p = a
we have ρ = 0, so the maximum occurs for p in the open set ]0, a[ and ρ has, at
least, one critical point in this interval.

The function ρ(p) is differentiable on ]0, a[ and

ρ′ =
1

2

(
1 + q′ − p+ qq′√

p2 + q2

)
.

Notice that the condition of tangency (2) is equivalent to

(2a− p) (2b− q) = 2ab.(15)

Thus if we differentiate (15) with respect to p, we get

− (2b− q)− (2a− p) q′ = 0.

Let u = 2a− p and v = 2b− q then q′ = − v
u
and

ρ′ =
1

2u
√

p2 + q2

(√
p2 + q2 (u− v)− (pu− vq)

)
.

Thus if p is a critical number for ρ then(
p2 + q2

)
(u− v)2 − (pu− vq)2 = 0

Expanding the previous equality, and noticing that (15) is equivalent to uv = 2ab,
we deduce that

p2v2 + q2u2 − 4p2ab− 4q2ab+ 4pqab = 0.
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From p2v2 + q2u2 = (pv + qu)2 − 2pquv = (pv + qu)2 − 4pqab we get

4ab
(
p2 + q2

)
= (pv + qu)2 .

Using pv+ qu = p (2b− q)+ q (2a− p) = 2ab− (2a− p) (2b− q)+ (2ab− pq) and
(15) we get

4ab
(
p2 + q2

)
= (2ab− pq)2 .

Adding +8abpq to both sides of the previous equality, we deduce that

4ab (p+ q)2 = (2ab+ pq)2

and thus, because a, b, p and q are positive,

2
√
ab (p+ q) = 2ab+ pq.

The condition of tangency (15) can be rewritten as 2ab+ pq = 2aq + 2bp, then(√
ab− b

)
p =

(
a−

√
ab
)
q.

Dividing both sides by
√
a−

√
b, we deduce that p

√
b = q

√
a. Finally, we substitute

q =
√
b√
a
p into (15) and we deduce that

(16) p2 − 2
√
a
(√

a+
√
b
)
p+ 2a

√
a
√
b = 0.

Solving for p, we get a unique solution in the open interval ]0, a[ :

p = a+
√
a
√
b−

√
a
√
a+ b.

Thus ρ has a unique critical point on the open interval ]0, a[ and ρ attains its max-

imum value at this point. This value occurs for p0 =
√
a
(√

a+
√
b−

√
a+ b

)
.

Let q0 = q(p0) =

√
b√
a
p0, then the maximum value for ρ is

ρ (p0) =
1

2

(
p0 + q0 −

√
p20 + q20

)
=

1

2

(
p0 +

√
b√
a
p0 −

√
p20 +

b

a
p20

)

=
p0
2
√
a

(√
a+

√
b−

√
a+ b

)
=

(√
a+

√
b−

√
a+ b

)2
2

= r.

This completes the proof. □
Remark. The following results are left as an exercise to the reader :

Let p1 = a+
√
a
√
b+

√
a
√
a+ b the second solution of (16), q1 =

√
b√
a
p1 and P1, Q1

the points with coordinates (a− p1, b) and (a, b− q1) respectively. Then the lines
P1Q1 is parallel to TT and is tangent to the ellipse. The incircle of the triangle
SP1Q1 is tangent to TT and its radius is

√
ab (see Figure 5).
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Figure 5.
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