Three Archimedean Circles Arising from Equilateral Triangles

Emmanuel Antonio José García
Colegio Bilingue New Horizons, Ave. Sarasota, 51,
Santo Domingo, Dominican Republic.
e-mail: emmanuelgeogarcia@gmail.com

Abstract. We construct three Archimedean circles from equilateral triangles in
the arbelos.
Keywords. arbelos, Archimedean circle, equilateral triangle.
Mathematics Subject Classification (2010). 51-04, 68T01, 68 T 99.

Consider an arbelos with inner semicircles $A C$ and $B C$ of radii a and b, and outer semicircle $A B$ of radius $a+b$. Archimedean circles are circles in the arbelos, congruent to the Archimedean twin circles. It is known the Archimedean circles have radius equals $\frac{a b}{a+b}[1,2]$. In this note we construct three Archimedean circles from equilateral triangles in the arbelos.

Theorem 1. In the arbelos construct equilateral triangles $\triangle A C D$ and $\triangle B C E$. Let $A E$ intersect $C D$ in F. Construct point G similarly. The circles of diameters $C F, F G$ and $G C$ are Archimedean (see Figure 1).

Proof. Since the triangles $\triangle A C F$ and $\triangle A B E$ are similar,

$$
\frac{C F}{A C}=\frac{B E}{A C+C B}
$$

Therefore

$$
C F=\frac{A C \cdot B E}{A B}=\frac{2 a b}{a+b} .
$$

Similarly we have $C G=\frac{2 a b}{a+b}$. Since the triangle $C F G$ is equilateral, the circle of diameter $F G$ is also Archimedean.

[^0]

Figure 1. The circles of diameters $C F, F G$ and $G C$ are Archimedean.

References

[1] C.W. Dodge, T. Schoch, P.Y. Woo and P. Yiu, Those Ubiquitous Archimedean Circles, Math. Mag., 72 (1999) 202-213.
[2] F. M. van Lamoen, Online catalogue of Archimedean circles, http://home.kpn.nl/lamoen/wiskunde/Arbelos/Catalogue.htm

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

