Sangaku Journal of Mathematics (SJM) ©SJM ISSN 2534-9562 Volume 5 (2021), pp. 14-18 Received 21 January 2021. Published on-line 27 January 2021 web: http://www.sangaku-journal.eu/ ©The Author(s) This article is published with open access<sup>1</sup>.

# The arbelos in Wasan geometry: Totsuka's problem (Problem 2017-3-6)

HIROSHI OKUMURA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

**Abstract.** We generalize Totsuka's problem involving a collinear arbelos, which is also proposed as Problem 6 in [12].

Keywords. arbelos, collinear arbelos, congruent circles in line.

# Mathematics Subject Classification (2010). 01A27, 51M04.

## 1. INTRODUCTION

Let  $\delta_1, \delta_2, \dots, \delta_n$  be congruent circles with collinear centers such that  $\delta_1$  and  $\delta_2$  touch and  $\delta_i \neq \delta_{i-2}$  touches  $\delta_{i-1}$  for  $i = 3, 4, \dots, n$ . In this case we call  $\delta_1, \delta_2, \dots, \delta_n$  congruent circles in line (see Figure 1).



In this article we consider the following configuration: For two points P and Q on the segment AB symmetric about the midpoint of AB, let  $\alpha$ ,  $\beta$  and  $\gamma$  be the semicircles of diameters AP, BQ and AB, respectively constructed on the same side of AB. The configuration of the three semicircles is a special case of a generalized arbelos called the collinear arbelos [6], [9]. Let  $\delta_1, \delta_2, \dots, \delta_n$  be congruent circles in line of radius r such that  $\delta_1$  touches  $\alpha$  internally at P and  $\delta_n$  touches  $\beta$  internally at Q. Then we assume that there are congruent circles  $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$  in

<sup>&</sup>lt;sup>1</sup>This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

line such that they have radius r and  $\varepsilon_1$  touches  $\beta$  externally and  $\gamma$  internally and  $\varepsilon_n$  touches  $\alpha$  externally and  $\gamma$  internally. In this case the configuration consisting of the three semicircles and the pair of the congruent circles in line is denoted by  $H_n$  (see Figure 2). If P = Q, we denote the configuration of the three semicircles by  $H_0$ . The radii of  $\alpha$  and  $\gamma$  are denoted by s and t, respectively for  $H_n$ , where we define r = s if n = 0.

The next problem for  $H_2$  using Figure 3 was proposed by Totsuka (戸塚古羽) in 1820 [2].

**Problem 1.** Show t = 6r for  $H_2$ .



The same problem using the same figure can be found in [3, 10, 11, 14, with no date]. Essentially the same problem using Figure 4 is proposed as Problem 6 in [12], which is taken from  $[5]^2$ . Similar problems for  $H_1$  can be found in [4, dated 1800] and [1, 13, 15, with no date].

#### 2. Generalization

We generalize Problem 1. We use a rectangular coordinate system with origin at the midpoint of AB so that the point A has coordinates (t, 0) and the farthest point on  $\gamma$  from AB has coordinates (0, t). We denote the coordinates of the center of the circle  $\varepsilon_i$   $(1 \le i \le n)$  by  $(x_i, y_e)$  for  $H_n$ . The next proposition gives a generalization of Problem 1.

**Proposition 1.** The following relations hold for  $H_n$ .

(1) 
$$s = \frac{2n+1+\sqrt{4n+1}}{2}r, \quad t = (n+1+\sqrt{4n+1})r.$$

(2) 
$$x_i = (2i - n - 1)r, \quad y_e = \sqrt{2n\left(3 + \sqrt{4n + 1}\right)}r.$$

Proof. The center of  $\beta$  has x-coordinate s - t, and we have  $x_1 = -(n-1)r$ . Solving the equations  $x_1^2 + y_e^2 = (t - r)^2$ ,  $(x_1 - (s - t))^2 + y_e^2 = (r + s)^2$  and |AB| = 2t = 4s - 2nr for s, t and  $y_e$ , we have (1) and the last part of (2). Obviously we get  $x_i = x_1 + 2(i-1)r = (2i - n - 1)r$ .

If n = 0, then t = 2r = 2s by (1). Therefore we get P = Q (see Figure 5, where the circle  $\eta_1$  will be explained later), and the circle  $\varepsilon_i$  does not exist. Therefore the proposition holds in this case. Assume n = 1. The proposition shows that  $s = \phi^2 r$  for  $H_1$ , where  $\phi = (1 + \sqrt{5})/2$ . Hence  $2s/|BP| = s/(s-r) = \phi$ . Therefore

<sup>&</sup>lt;sup>2</sup>The links of Wasan books in the references in [12] are dead due to the URL changes.

the semicircle of diameter BP constructed on the same side of AB as  $\alpha$ , and  $\alpha$  and  $\gamma$  form a golden arbelos for  $H_1$ , where the circle  $\varepsilon_1$  is one of the twin circles of Archimedes (see Figure 6).



We show that if O and S are the centers of  $\gamma$  and  $\alpha$ , respectively, then 2|OS| = |AQ| holds. Let p and q be the x-coordinates of the points P and Q, respectively. Then p + q = 0. While |OS| = (t + p)/2. Therefore we have 2|OS| = t + p = t - q = |AQ|. The relation holds even if  $\alpha$  and  $\beta$  have no point in common.

## 3. INTEGER CASE

In this section we consider the case in which the ratio t/r is an integer for  $H_n$ .



**Theorem 1.** The ratio t/r is an integer if and only if there is a non-negative integer k such that n = k(k+1) for  $H_n$ . In this event, we have the followings. (i) The following relations hold.

(3) 
$$s = (k+1)^2 r, \quad t = (k+1)(k+2)r,$$

(4) 
$$x_i = (2i - k(k+1) - 1)r, \quad y_e = 2\sqrt{k(k+1)(k+2)}r.$$

(ii) There are k + 1 congruent circles  $\eta_1, \eta_2, \dots, \eta_{k+1}$  in line such that they have radius r and  $\eta_1$  touches  $\beta$  externally at Q and  $\eta_{k+1}$  touches  $\alpha$  internally at A.

*Proof.* The ratio t/r is an integer if and only if 4n + 1 is the square of an integer by (1), which is equivalent to  $4n + 1 = (2k + 1)^2$  for a non-negative integer k. The last equation is equivalent to n = k(k + 1) and (3) and (4) hold in this event by (1) and (2). The part (ii) is proved by the following relation obtained by (3) :

$$|AQ| = |BP| = t - nr = 2(k+1)r.$$

For a similar result for Problem 2017-3-5 see [7] and [8]. If k = 0, then the half part of  $\eta_1$  coincides with  $\alpha$  (see Figure 5), but the circle  $\varepsilon_i$  does not exist. Therefore Theorem 1 holds in the case k = 0. The fact justifies our definition r = s in the case n = 0. Problem 1 is the case k = 1 (see Figure 7).

Assume  $k \ge 1$ . The point P has x-coordinate -k(k+1)r, while the point A has x-coordinate (k+1)(k+2)r by (3). Hence the point of intersection of  $\alpha$  and  $\beta$ , which coincides with the point of intersection of  $\alpha$  and the y-axis, has y-coordinate  $(k+1)\sqrt{k(k+2)}r$ . Therefore the center of  $\varepsilon_1$  lies on the line passing through this point parallel to AB if and only if k = 3 by (4). While  $H_n$  is symmetric about the y-axis. Hence the point of tangency of the circles  $\varepsilon_6$  and  $\varepsilon_7$  lie on the y-axis for  $H_{12}$ , i.e., they touch at the point of intersection of  $\alpha$  and  $\beta$  (see Figure 9).



Figure 9: k = 3,  $H_{12}$ ,  $\varepsilon_6$  and  $\varepsilon_7$  touch at the point of intersection of  $\alpha$  and  $\beta$ .



**Theorem 2.** The following statements hold for  $H_{k(k+1)}$ .

(i) The circle  $\varepsilon_{k+2}$  touches  $\alpha$  externally.

(ii) There are k + 2 congruent circles  $\zeta_1, \zeta_2, \dots, \zeta_{k+2}$  in line such that they have radius r and  $\zeta_1$  touches  $\alpha$  externally and  $\beta$  internally, and  $\zeta_{k+2}$  touches  $\alpha$  internally and  $\beta$  externally.

(iii) The orthogonal projection of the centers of  $\zeta_1$  and  $\zeta_{k+2}$  to AB coincide with the centers of  $\beta$  and  $\alpha$ , respectively.

Proof. Recall that the centers of  $\varepsilon_i$  and  $\alpha$  have coordinates  $(x_i, y_e)$  and  $(x_a, 0) = (t - s, 0) = ((k + 1)r, 0)$  by (3), respectively. Then  $\varepsilon_i$  and  $\alpha$  touch externally if and only if  $(x_a - x_i)^2 + (0 - y_e)^2 - (s + r)^2 = 0$ . The left side of the equation equals  $4(k + 2 - i)(k(k + 1) - i)r^2$  by (3) and (4). This proves (i) (see Figures 8 and 9). Let  $\zeta_1, \zeta_2, \dots, \zeta_i$  be congruent circles in line and let  $(x_z, y_z)$  be the coordinates of the center of  $\zeta_1$ . Then  $\zeta_1$  touches  $\alpha$  externally and  $\beta$  internally, and  $\zeta_i$  touches  $\alpha$  internally and  $\beta$  externally if and only if  $(x_z - (k+1)r)^2 + y_z^2 = (s+r)^2$ ,  $(x_z + (k+1)r)^2 + y_z^2 = (s-r)^2$  and  $(x_z + 2(i-1)r - (k+1)r)^2 + y_z^2 = (s-r)^2$ . Solving

the equations for i,  $x_z$  and  $y_z$ , we have i = k+2 and  $(x_z, y_z) = (-(k+1)r, k(k+2)r)$ . This proves (ii) and (iii) (see Figure 10).

The circle  $\varepsilon_{k+2}$  does not exist if k = 0, 1, i.e., (i) holds in this case. If k = 0, then the half parts of the circles  $\zeta_1$  and  $\zeta_2 = \eta_1$  coincide with  $\beta$  and  $\alpha$ , respectively (see Figure 11).

#### References

- [1] Fujiwara (藤原貞行), Fujiwara Sadayuki Soukou (藤原貞行草稿), no date, Tohoku University Digital Collection.
- [2] Kawada (川田保知) et al. ed., Zoku Kiōshū (続淇澳集), vol. 5, no date, Tohoku University Digital Collection.
- [3] Kokubu (国分生芽) ed., Sampō Shōsū Shomon (算法象数初問), no date, Tohoku University Digital Collection.
- [4] Matsunaga (松永貞辰), Sekiryū Hiritsu Endan (関流秘率演段), 1800, Tohoku University Digital Collection.
- [5] Okayu (御粥安本) ed., Honchō Sekisensei Sandai Kujō (奉納箸隻先生算題九条), 1855, Tohoku University Digital Collection.
- [6] H. Okumura, Ootoba's Archimedean circles of the collinear arbelos, Sangaku J. Math., 4 (2020) pp.31-35.
- [7] H. Okumura, Solution to the problem proposed in "Solution to 2017-3 Problem 5", Sangaku J. Math., 2 (2018) 24–26.
- [8] H. Okumura, Solution to 2017-3 Problem 5, Sangaku J. Math., 2 (2018) 17-21.
- [9] H. Okumura, Archimedean circles of the collinear arbelos and the skewed arbelos, J. Geom. Graph., 17 (2013) 31–52.
- [10] Sakuma (佐久間鑚), Sampō Tenshōhō Shogaku Youdaishū (算法天生法初学容題集), no date, Tohoku University Digital Collection.
- [11] Toyoyoshi (豊由周齋) ed., Tenzan (點竄), no date, Digital Library Department of Mathematics Kyoto University.
- [12] Problems 2017-3, Sangaku J. Math., 1 (2017) 21–23.
- [13] no author's name, Endan Shijūhachimon (演段四十八問), no date, Tohoku University Digital Collection.
- [14] no author's name, Sandai Kenbunki (算題見聞記), no date, Tohoku University Digital Collection.
- [15] no author's name, Sandaishū (算題集), no date, Tohoku University Digital Collection.