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1. Introduction

For a point C on the segment AB such that |BC| = 2a, |CA| = 2b and |AB| = 2c,
we consider an arbelos formed by the three semicircles α, β and γ of diameters
BC, CA and AB, respectively, constructed on the same side of AB (see Figure
1). Let t be the tangent of α from the point A. In this article we generalize the
following problem proposed by Saitoh (斎藤清馨) in 1811 [2] (see Figure 2).
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Problem 1. Assume that a = b and t meets β again in a point F . Show that the
radius of the circle touching t at F and γ internally equals c/3.

The problem also shows |CF | = c/3. The arbelos in Wasan geometry is
usually indicated by three circles so that the line joining the three centers of the
circles are vertical. But the figure of the problem in [2] is described by three
semicircles with the horizontal line passing through their centers just as shown in
Figure 2.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. Generalization

We generalize Problem 1. We use a rectangular coordinate system with origin
C such that the farthest point on α from AB has coordinates (a, a). Assume
that Z is a point on the line AB and F is the foot of perpendicular from Z to t.
The mirror images of α and γ in AB are denoted by α′ and γ′, respectively. We
consider the two circles δz and εz of radii dz and ez, respectively, such that they
touch t at F and one touches γ and the other touches γ′ and ez ≤ dz (see Figure
3). The two circles are said to be determined by Z. Notice c = a + b. The circle
γ ∪ γ′ has an equation

γ(x, y) = (x− 2a)(x+ 2b) + y2 = 0.

Let m = a/(2
√
bc). The line t has an equation

(1) t(x, y) = (x+ 2b)m− y = 0.

And the line ZF has an equation

zf (x, y) = (x− z) +my = 0.

Assume that Z and the center of δz have coordinates (z, 0) and (xd, yd).

Theorem 1. The following relations holds.

(2) dz =
|γ(z, 0)|
b+ c

, ez =
b

c
dz.

Proof. Assume that Z lies between A and B. Then δz and εz touch γ′ and γ
internally, respectively (see Figure 3). Assume that the perpendicular from the
center of δz to AB meets t in a point of coordinates (xd, y

′). Then yd = y′ − k for
a positive real number k. Then t(xd, yd) = t(xd, y

′) + k = k > 0 by (1). Therefore
we have t(xd, yd)/

√
m2 + 1 = dz. Also we have (xd − (a − b))2 + y2d = (c − dz)

2

and zf (xd, yd) = 0. Eliminating xd, yd from the three equations, and solving the
resulting equation for dz, we get

dz = −(z − 2a)(z + 2b)

b+ c
=

|γ(z, 0)|
b+ c

.

Similarly we get ez = (b/c)dz. Hence we get (2). The rest of the theorem is proved
similarly. □

Z

F

δz

εz

C

t

γ

γ′

α

β

A B

Figure 3.

α

γ

γ′

t

BA
β

ρ

Figure 4: The case Z = C.

Corollary 1. dz + ez =
|γ(z, 0)|
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Let ρ be the circle touching α externally and γ internally and the radical axis
of α and β from the side opposite to A. The circle ρ is well-known as one of the
twin circles of Archimedes, and has radius ab/c [1]. We consider the case Z = C.
Then F lies on β as in Problem 1. In this case we get dz + ez = 4ab/c by the
corollary, which equals four times the radius of ρ (see Figure 4). Theorem 1 shows
that the ratio of the radii of δz and εz are constant if Z ̸= A and Z ̸= B.

3. Axis

In this section we consider one of the external common tangents of the circles
determined by the point Z which is perpendicular to AB. Let xe be the x-
coordinate of the center of the circle εz.
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Theorem 2. The following statements hold.
(i) One of the external common tangent of the circles determined by Z is perpen-
dicular to AB, which is represented by the equation

x = hz =
2b(z − a)(z + a+ 4b)

(b+ c)2
.

(ii) If Z lies between A and B, then xd − dz = xe − ez = hz, otherwise xd + dz =
xe + ez = hz.

Proof. Assume z ≤ −2b or 2a ≤ z (see Figures 5 and 7). Since δz touches t from
the side opposite to B, we get t(xd, yd) ≤ 0. Hence we have

t(xd, yd)√
m2 + 1

= −dz, zf (xd, yd) = 0.
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Eliminating yd from the two equations, we have

xd =
4b2z + a(2b− z)z + 2a2(b+ z)

(b+ c)2
.

Similarly we have

xe =
b(4b2z + az(z + 10b) + 2a2(z − 3b)− 2a3)

c(b+ c)2
.

We have the same results in the case −2b < z < 2a similarly. Then we get

xd +
γ(z, 0)

b+ c
= xe +

b

c

γ(z, 0)

b+ c
= hz.

Hence we have xd − dz = xe − ez = hz if −2b < z < 2a (see Figure 6), and
xd + dz = xe + ez = hz if z < −2b or 2a < z by (2). The proof is complete. □

The common tangent of the circles determined by the point Z perpendicular
to AB is called the axis of Z. If Z = A or Z = B, then the circles determined
by Z degenerate to the point A or B. In this case we consider that the axis of Z
is the perpendicular to AB passing through A or B, respectively. Let ηz be the
circle of center A passing through F (see Figure 8).

Theorem 3. The axis of Z coincides with the radical axis of the circles γ and ηz.

Proof. Let (xf , yf ) be the coordinates of F . Solving the equations t(xf , yf ) = 0
and zf (xf , yf ) = 0, we have

(3) (xf , yf ) =

(
−2a2b+ 4bcz

(b+ c)2
,
2a

√
bc(2b+ z)

(b+ c)2

)
.

While the circle ζz is represented by the equation

ζz(x, y) = (x+ 2b)2 + y2 − (xf + 2b)2 − y2f .

This implies ζz(x, y)− γ(x, y) = 2c(x− hz). □
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Figure 9.

The next theorem shows that Theorem 3 is not a theorem for the arbelos (see
Figure 9).
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Theorem 4. For a point S on a secant s of a circle ζ, let η be a circle of center
at one of the points of intersection of ζ and s passing through S. Then the radical
axis of ζ and η coincides with one of the external common tangents of the two
circles touching s at S and ζ.

Proof. Assume that s meets ζ again in a point A′ and A is the center of η and
AB is a diameter of ζ. Let t = s, F = S and ηz = η. If γ is the semicircle
of diameter AB containing A′ and Z is the point of intersection of AB and the
perpendicular to s at S, then we can construct Figure 8 referred in Theorem 3
with this figure. □

Let η′ be the circle of center A′ passing through S in the proof. Then the two
external common tangents of the two circles touching s at S and ζ meets in the
radical center of the circles ζ, η and η′. Therefore the perpendicular to s at S
passes through this point (see Figure 9).

4. Common axis

From now on we assume that Z1 and Z2 are two distinct points on the line AB
having x-coordinates z1 and z2, respectively. In this section we consider the case
in which the two points share a common axis. Let Fi be the foot of perpendicular
from Zi to t. The next theorem gives a condition under which the points Z1 and
Z2 have a common axis (see Figures 10 and 11).
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Theorem 5. Two distinct points Z1 and Z2 have a common axis if and only if
the point A coincides with the midpoint of Z1Z2.
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Proof. By Theorem 2, Z1 and Z2 have a common axis if and only if (z1 − a)(z1 +
a+4b) = (z2−a)(z2+a+4b), which is equivalent to (z1−z2)(z1+z2+4b) = 0. □

Assume that the point A coincides with the midpoint of Z1Z2. The circle of
center at the point of intersection of t and the common axis of Z1 and Z2 and
passing through the point Fi is orthogonal to the two circles determined by Zi,
which are not indicated in Figures 10 but in Figures 11 in pink. Notice that
the right triangles AZ1F1 and AZ2F2 are congruent. In this case the circles ηz1
and ηz2 coincide, i.e., the circle ηz1 = ηz2 is the circle of diameter F1F2, which
is orthogonal to the circles determined by Z1 and Z2. The common axis is the
radical axis of γ and this circle by Theorem 3.

In this case, if exactly one of Z1 and Z2 lies between A and B, then one
of F1 and F2 lies insides of γ, and the common axis intersects γ and the circles
determined by Z1 touch the axis from the side opposite to the circles determined
by Z2 by Theorem 2(ii). Therefore the circles determined by one of Z1 and Z2

touch γ externally and the other two circles touch γ internally (see Figure 10).
If both Z1 and Z2 do not lie between A and B, then the common axis does not
intersect γ and the circles determined by Z1 and Z2 touch the axis from the same
side, and they touch γ externally (see Figure 11). The next theorem is rather
obvious.

Theorem 6. There are two distinct points Z1 and Z2 having a common axis
represented by the equation x = h if and only if −2b < h.

Proof. By Theorem 2, h = hz is equivalent to

(4) 2bz2 + 8b2z − (2ab(a+ 4b) + (a+ 2b)2h) = 0.

We consider (4) as a quadratic equation with unknown z. Then there are two
distinct points Z1 and Z2 having the common axis represented by x = h if and
only if (4) has two distinct real solutions. While the discriminant of (4) equals
8b(a+ 2b)2(2b+ h). The proof is complete. □
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We now consider the special case in which the common axis coincides with
the radical axis of α and β (see Figures 12 and 13). This case happens if and only
if {z1, z2} = {a,−a− 4b} by Theorem 2. Let z1 = a and z2 = −a− 4b. Then the
point Z1 coincides with the center of α. The circle δz1 coincides with the circle
α ∪ α′. The circle εz1 coincides with the Archimedean circle ρ defined in Section
2, for F1 is the point of tangency of α and ρ and t [1]. The circle of center at the
point of intersection of t and the common axis and passing through the point F1

is orthogonal to β and touches AB at C.

5. Common axis with a pair of congruent circles

There arises a problem of determining the case in which Z1 and Z2 have a com-
mon axis and the two circles determined by Z1 are congruent to the two circles
determined by Z2. However the next theorem shows that there is no such case.

Theorem 7. For distinct two points Z1 and Z2, there is no case such that they
share a common axis and the two circles determined by Z1 are congruent to the
two circles determined by Z2.

Proof. Assume that the two points share an axis and the circles determined by
Z1 are congruent to the circles determined by Z2. If both Z1 and Z2 do not lie
between A and B, then the circles determined by Z1 are not congruent to the
circles determined by Z2 (see Figure 11). Hence exactly one of Z1 and Z2 lies
between A and B by Theorem 2(ii). This implies that γ(z1, 0) and γ(z2, 0) have
different signs. Therefore we have γ(z1, 0) + γ(z2, 0) = 0 and z1 + z2 = −4b
by Theorems 1 and 5. Solving the two equations, we get z1 = z2 = −2b, a
contradiction. □

We now consider the case in which the points Z1 and Z2 have a common
axis and one of the circles determined by Z1 is congruent to one of the circles
determined by Z2 by the theorem (see Figures 14 and 15, where the congruent
circles are described in blue and the captions will be explained later).

Theorem 8. Two points Z1 and Z2 (z1 > z2) share a common axis and one of
the circles determined by Z1 is congruent to one of the circles determined by Z2

if and only if they satisfy the following condition:

(i) z1 = −2b+
2ca

b+ c
and z2 = −2b− 2ca

b+ c
.

or

(ii) z1 = −2b+
2c(b+ c)

a
and z2 = −2b− 2c(b+ c)

a
.

In this event the circles δz1 and εz2 are congruent and have the same radius

8abc2

(b+ c)3
if (i) holds and

8bc2

a2
if (ii) holds.

Proof. Assume that Z1 and Z2 share a common axis. Then z1 = −2b + z and
z2 = −2b− z for a positive real number z by Theorem 5. Theorem 1 shows that if
the circles δz1 and δz2 are congruent then the circles εz1 and εz2 are also congruent,
and conversely. But this case never happens by Theorem 7. Hence it is sufficient
to consider the case where the circles δz1 and εz2 or the circles εz1 and δz2 are
congruent. The circles δz1 and εz2 are congruent if and only if

|γ(−2b+ z, 0)| = b|γ(−2b− z, 0)|/c
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by Theorem 1. This is equivalent to

z(c|z − 2c| − b|z + 2c|) = 0.

The last equation has two positive solutions z = 2ca/(b+ c) and z = 2c(b+ c)/a.
If εz1 and δz2 are congruent, we have

b|γ(−2b+ z, 0)|/c = |γ(−2b− z, 0)|,
which is equivalent to

z(b|z − 2c| − c|z + 2c|) = 0.

However the last equation for z has no positive solution. Therefore εz1 and δz2
are not congruent in any case. The rest of the theorem follows by (2). □
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If z = 2ca/(b + c), then 2a − z1 = 2a − (−2b + z) = 4bc/(b + c) > 0, which
implies −2b < z1 < 2a. If z = 2c(b+c)/a, then z1−2a = −2b+z−2a = 4bc/a > 0,
which implies 2a < z1. Therefore Figures 14 and 15 denote the cases (i) and (ii),
respectively.
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