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Abstract. I discuss solutions of two related problems transcribed in [6, pp. 393–94, 408–12] 

about a surface I call a Japanese wedge, which resembles but is crucially different from the 

conocuneus of Wallis. These solutions illustrate how Japanese of the early 19th century 

numerically evaluated definite integrals using infinite series. I also show that certain tear-drop 

shaped sections of the Japanese wedge differ from pegtop curves except in special 

circumstances.  
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1. INTRODUCTION 

 

An elliptical CONOID is a ruled surface in which every point on an ellipse (the DIRECTOR)—

possibly a circle—lies on a line (a RULING) that passes through a fixed line (the AXIS or EDGE), 

which is parallel to the plane of the director (the BASE). Crucially, all the rulings are parallel to a 

plane (a DIRECTRIX) orthogonal to the base; because of this condition, elliptical conoids are 

Catalan surfaces, as explained below. If the edge is perpendicular to a directrix, the surface is a 

RIGHT CONOID. In 1684, John Wallis called the right circular conoid a shipwright's wedge, or, as 

he put it in Latin, CONOCUNEUS  [17].  

 

Let the base of an elliptical conoid be the 𝑋𝑌 plane of a three-dimensional Cartesian coordinate 

system with its origin at the center of the director. If the director is an ellipse other than a circle, 

we stipulate that its major and minor axes lie, respectively, on the X and Y axes of the system.  
 

1 This article is distributed under the terms of the Creative Commons Attribution License which permits any use, 

distribution, and reproduction in any medium, provided the original author(s) and the source are credited. 

http://www.sangaku-journal.eu/
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It is usual to stipulate further that the edge of a right elliptical wedge is bisected by the Z axis. 

Hence, if the edge and major axis (or, in the case of a circle, parallel diameter) are equal, their 

endpoints are the vertices of a rectangle in the XZ plane.  

 

In the shape the Japanese called a daen-setsu ‘elliptical wedge’ 楕円楔, the quadrilateral in the 

XZ plane is, by contrast, typically an isosceles trapezoid, with unequal parallel sides. For this 

reason, it is not a conoid though it resembles one and gets it name from the same sort of tool that 

inspired Wallis. In modern geometry, the term ‘wedge’ has come to be used in several unrelated 

ways, so to be precise, I suggest that the shape in Figure 1 be called a Japanese wedge to 

distinguish it from the wedge that Wallis studied.  

 

 
 

As a ruled surface, a Japanese wedge may be described by the two-parameter vector equation 

𝒘(𝑢, 𝑣) = 𝜶(𝑢) + 𝑣𝜸(𝑢), where 𝜶(𝑢) = (𝑎 cos 𝑢 , 𝑏 sin 𝑢 , 0) and 𝜸(𝑢) = ((𝑎 −

𝑐)  cos 𝑢 , 𝑏 sin 𝑢 , −ℎ). Since 𝜸(𝑢) ∙ 𝜸′(𝑢) × 𝜸′′(𝑢) = det(𝜸(𝑢), 𝜸′(𝑢), 𝜸′′(𝑢)) = 𝑏(−𝑎 + 𝑐)ℎ 

is zero if and only if 𝑎 = 𝑐, 𝒘 is not a Catalan surface, unlike the conocuneus.2 Even if one gives 

a conocuneus an elliptical rather than circular director, the Japanese wedge is mathematically 

distinct.  

 

Hasegawa Hiromu 長谷川弘 (1810–1887), who discussed both kinds of wedges ([9], [13, pp. 

284–90]), understood this difference.3 In [9], he discusses, among many other topics, problems 

about both Japanese wedges and conocunei, which he calls sakkei 作形 ‘artificial; fictive’ 

wedges. In such a wedge, every directrix plane cuts the wedge in an isosceles triangle. If, as 

Hasegawa usually assumes, the director is a circle and the edge equals its diameter, all the 

triangles have the same altitude and one has Wallis’s conocuneus. But if, as in Figure 2, the 

 
2 It is also not a developable surface—it cannot be flattened onto a plane without distortion—because 

det(𝜶′(𝑢), 𝜸′(𝑢), 𝜸(𝑢)) = 𝑏𝑐ℎ cos 𝑢 sin 𝑢 is zero if and only if 𝑢 = 𝑛𝜋/2, 𝑛 ∈ 𝐙. 
3 An eight-member study group of the longstanding Kinki wasan zemināru (Kansai Region Traditional 

Mathematics Seminar) met bimonthly starting in 2001 to discuss Hasegawa’s treatise, and, in or after 2005, issued a 

detailed 230-page annotated edition in modern Japanese compiled under the direction of Kotera Hiroshi [11]. 

Figure 1. Japanese Wedge 
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director is an ellipse with major axis longer than the edge, then for directrices that do not 

intersect the edge between its endpoints, the altitudes of the isosceles triangles get shorter as one 

approaches the endpoints of the major axis, where they are zero. 

 

 

 
 

For Hasegawa, a seikei 正形 or ‘proper; normal’ wedge (our Japanese wedge) is defined 

differently. Assuming again a circular director with a diameter equal to the edge, one divides the 

edge and the two semicircular director arcs between the endpoints of the diameter parallel to the 

edge into n equal parts each; joins the points on the two arcs to the corresponding points on the 

edge with rulings; and imagines n increasing indefinitely. In modern terms, that is exactly the 

operation described by the equation for 𝒘(𝑢, 𝑣) above. Except for the rulings with 𝑦 = 0, none 

is parallel to a directrix, as can be seen in Figure 3.  

 

 

 
 

Equivalent parameterizations of a Japanese wedge 𝑊 for ellipse axes 2𝑎 > 2𝑏, edge 2𝑐, and 

altitude ℎ are (𝑥, 𝑦, 𝑧) = ((𝑎 − 𝑎𝑡 + 𝑐𝑡) cos 𝑢 , 𝑏(1 − 𝑡) sin 𝑢 , ℎ𝑡) for all 𝑢, 0 ≤ 𝑢 < 2𝜋, and 

𝑡, 0 ≤ 𝑡 ≤ 1; and, from the standard Cartesian equation for ellipses, (𝑥, 𝑦, 𝑧) =

(𝑥,
±𝑏(1−𝑡)√(𝑎−(𝑎−𝑐)𝑡)2−𝑥2

𝑎−(𝑎−𝑐)𝑡
, ℎ𝑡) for 𝑡, 0 ≤ 𝑡 ≤ 1 and 𝑥, −𝑎 ≤ 𝑥 ≤ 𝑎. 

 

         Figure 2. An “artificial” wedge 

Figure 3. A “proper” wedge 
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In fascicle 2 of [9], Hasegawa treats various plane sections of artificial wedges, turning briefly to 

proper wedges only in fascicle 3.  He asks for the area of the intersections of the wedge and 

sectioning planes and for the volumes of the parts of the wedges they separate. Both kinds of 

problem involve integration, and fascicle 2 begins with a series of tables (discussed in [10] and 

[11]) that Hasegawa used to evaluate definite integrals numerically. In [11], there is an 

acknowledgment of a series of articles on integration in wasan by Fukagawa Hidetoshi ([2], [3], 

[4], [5]). Not mentioned, however, is [6], also by Fukagawa, in which two similar problems are 

presented. The first asks for the area of the section of a proper (i.e. Japanese) wedge W and a 

plane passing through both the point (−𝑐, 0, ℎ) and the tangent to the director at vertex (𝑎, 0,0) 

(Figure 4). Fukagawa discusses a solution that he ascribes to Yoshida Tameyuki 吉田為幸
(1819–1892). It uses the parameter 𝑡 but neither of parameterizations given above. Instead, 

Yoshida relies on the Crossed Chords theorem, as described below, to find the lengths of chords 

parallel to the directrix. Significantly, Yoshida’s solution appeared on a sangaku posted at a 

temple in the Yotsuya district of Edo (Tōkyō) in 1829. 4  

 

 
 

 

2. WARM-UP EXERCISE: THE SPECIAL DIAGONAL SECTION 

 

The length of the MIDLINE (axis of symmetry) joining points (−𝑐, 0, ℎ) and (𝑎, 0,0) is 𝑘 =

√(𝑎 + 𝑐)2 + ℎ2.5 A plane Π parallel to the base of 𝑊 at height 𝑧 = ℎ𝑡, 0 ≤ 𝑡 ≤ 1, cuts this 

midline at a point 𝑃 at distance 𝑘𝑡 from (𝑎, 0,0) (Figure 5). 𝑃 also divides the major axis 𝑢 of the 

ellipse in Π into segments 2𝑎(1 − 𝑡) and 2𝑐𝑡. Likewise, the minor axis 𝑣 of the ellipse in Π is 

2𝑏(1 − 𝑡). To simplify the expression for 𝑢 =  2𝑎(1 − 𝑡) + 2𝑐𝑡, Yoshida introduces 𝑛 = 1 −
𝑐

𝑎
=

𝑎−𝑐

𝑎
 so that he can write 𝑢 = 2𝑎(1 − 𝑛𝑡). 

 
4 Fukagawa refers to a commentary, which I have been unable to locate, by Yoshida (n.d.) on the book Kokon 

sankan 古今算鑑 (1832) of Uchida Yatarō 内田弥太郎 (better known as Uchida Itsumi内田五観, 1805–1882, 

occasionally内田恭). According to [1, p. 9], Yoshida posted two sangaku in Nagoya in 1842, but the subjects of 

these are not known. 
5 I generally follow Fukagawa’s notation, but have adjusted it here and there to make sections 2 and 3 of this 

article more consistent, and to fix some slips of the pen. 

Figure 4. Special diagonal section 
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Denoting the center of the ellipse in Π as O, circle (𝑂)
𝑢

2
 passes through its vertices. If the chord 

of this circle perpendicular to 𝑂𝑃 through 𝑃 has length 𝑝, then 

 

𝑝 = 2√[(2𝑎(1 − 𝑡)][2𝑐𝑡] = 4√𝑎𝑐𝑡(1 − 𝑡), 
 

and the coincident chord of the ellipse has length  

 

𝑞 = 𝑝
𝑣

𝑢
=

2𝑏(1 − 𝑡)

2𝑎(1 − 𝑛𝑡)
4√𝑎𝑐𝑡(1 − 𝑡) =

4𝑏√𝑐

√𝑎

√𝑡√1 − 𝑡
3

1 − 𝑛𝑡
. 

 

 

 
 

Figure 5. Ellipse and circumcircle in plane Π (2 views) 

 

To obtain the area 𝑆 of the diagonal section, we sum up the areas of all the infinitesimally narrow 

rectangles with long sides 𝑞 lying in the diagonal plane over the length of the midline segment 

from the edge to the base. I.e. 𝑆 = 𝑘 (∫ 𝑞
1

0
𝑑𝑡) =

4𝑏𝑘√𝑐

√𝑎
∫

√𝑡√1−𝑡
3

1−𝑛𝑡

1

0
𝑑𝑡. According to [6], this leads 

to 𝑆 =
2𝑏√𝑐𝑘𝜋

√𝑎𝑛3 (
2𝑐√𝑐

𝑎√𝑎
− 2 + 3𝑛 −

3𝑛2

4
) and 5.67232 for 𝑎 = 2, 𝑏 =

3

2
, 𝑐 =

1

2
, and ℎ = 6. A 

program such as Mathematica yields the more compact form 𝑆 =
𝑏𝑘𝜋(√𝑎+3√𝑐)√𝑎𝑐

2(√𝑎+√𝑐)3 .  

 

The crucial fact illustrated by the foregoing solution is that Hasegawa’s and his predecessors 

knew how to evaluate definite integrals such as ∫
√𝑡√1−𝑡

3

1−𝑛𝑡

1

0
𝑑𝑡. Kotera [10] explains the series 

used to do this, citing [9] and modern summaries of the work of Wada Yasushi 和田寧 (or Wada 

Nei, 1787–1840). For instance, having found infinite series for 𝜋, 𝜋 4⁄ , 𝜋2, and so on [13, pp. 

213–17], Edo period Japanese had deduced the equivalent of ∫ √1 − 𝑥21

0
𝑑𝑥 = 𝜋 4⁄  [10, pp. 

164–5). They evaluated ∫
1

√1−𝑛𝑡

1

0
𝑑𝑡 by using the binomial expansion of (1 − 𝑛𝑡)−

1

2, each term of 

which they could integrate [2, p. 12]. This was a remarkable achievement considering that they 

were sometimes less than rigorous (e.g. the series for (1 − 𝑛𝑡)−
1

2 does not converge unless 
|𝑛𝑡| <1); eschewed the use of trigonometry except for practical problems [15]; and, lacking a 

theory of differentiation, labored without the aid of the fundamental theorem of calculus. 

Nevertheless, they were able to calculate areas and volumes in many cases [8, pp.300–311], and 
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did not shy away from difficult problems such as the ones Hasegawa systematically tackled in 

[9].  

 

 

 

3. EQUATION OF A DIAGONAL SECTION 

 

To obtain the Cartesian equation of the tear-drop-shaped section for which we just found the 

area, we can substitute 1 −
𝑥

𝑘
 for 𝑡 in 𝑦 =

2𝑏𝑘√𝑐

√𝑎

√𝑡√1−𝑡
3

1−𝑛𝑡
=

4𝑏(1−𝑡)√𝑎𝑐(1−𝑡)𝑡

𝑎(1−𝑡)+𝑐𝑡
 provided that 0 ≤ 𝑥 ≤

𝑘.6 Squaring, 𝑦2 =
4𝑎𝑏2𝑐(𝑘−𝑥)𝑥3

𝑘2(𝑐(𝑘−𝑥)+𝑎𝑥)2
. Fukagawa [7, pp. 240–42], citing a reprint of [14, v. 1, pp. 

289–95], calls this a piriforme quartique, but that is a bit misleading for two reasons.  

 

First, the PIRIFORM curve (less confusingly called a PEGTOP)7 is, strictly speaking, the curve 

defined by the Cartesian equation 𝑎4𝑦2 = 𝑏2𝑥3(2𝑎 − 𝑥), where the pegtop’s midline lies on the 

X axis and 𝑦 = (0, ±𝑏) for 𝑥 = 𝑎. The equivalent parametric equations are equations 𝑥 =
𝑎(1 + sin 𝑡) and 𝑦 = 𝑏 cos 𝑡(1 + sin 𝑡) for 0 ≤ 𝑡 ≤ 2𝜋. Significantly, the area of a pegtop is 

𝜋𝑎𝑏, the same as that of an ellipse with semiaxes 𝑎 and 𝑏; we will make use of this fact 

presently. For now, note that 𝑦 = √
4𝑎𝑏2𝑐(𝑘−𝑥)𝑥3

𝑘2(𝑐(𝑘−𝑥)+𝑎𝑥)2 =
2𝑏𝑥√𝑎𝑐(𝑘−𝑥)𝑥

𝑘(𝑐(𝑘−𝑥)+𝑎𝑥)
 yields 𝑦 =

𝑏√𝑎𝑐

𝑎+𝑐
 for 𝑘 = 1 and 

𝑥 =
1

2
. 

 

If the curve discussed in section 2 were a pegtop, then the ellipse of equal area 𝑆 =
𝑏𝑘𝜋(√𝑎+3√𝑐)√𝑎𝑐

2(√𝑎+√𝑐)3  and major axis 𝑘 would have semiminor axis 𝑦 =
2𝑆

𝜋𝑘
= 

𝑏(√𝑎+3√𝑐)√𝑎𝑐

(√𝑎+√𝑐)
3 .  But if 𝑘 =

1, then 𝑥 =
1

2
 so, as just noted, 

𝑏(√𝑎+3√𝑐)√𝑎𝑐

(√𝑎+√𝑐)
3 =

𝑏√𝑎𝑐

𝑎+𝑐
. This is equivalent to 𝑎 = 𝑐 and true for the 

conocuneus but not for the typical Japanese wedge. Curves like the one studied in section 2 are 

therefore pegtops only if 𝑎 = 𝑐.  Wada seems to have been the first Japanese to study curves of 

this kind ([16], [6, pp. 240–41]) and he called them seitō-en ‘flame curves’ 盛灯円, 8 so that is 

the name I will use below.  

 

Second, the visual resemblance of flame curves and pegtops vanishes when we generalize the 

foregoing problem by using the point (𝑑, 0, ℎ), −𝑐 < 𝑑 < 𝑐, rather than (𝑐, 0, ℎ) to define the 

diagonal plane. Taking the second parametrization in section 2 for the points on 𝑊 and 

substituting 
𝑎−𝑥

𝑎−𝑑
 for 𝑡, we get Wada’s flame curve for 𝑥, 𝑑 ≤ 𝑥 ≤ 𝑎, but if we let 𝑥 run from −𝑎 

 
6 We could substitute 𝑥/𝑘 for 𝑡, but since 1 − 𝑡 appears more often than 𝑡 in the expression for 𝑦, our choice 

leads to a simpler form. 
7 Wallis, in 1685, called his quartic curve “piriform,” i.e. pear-shaped, but algebraically distinct curves have 

more recently been given the names PEAR CURVE and PEAR-SHAPED CURVE.   
8 Sometimes the word is just tō-en. Hasegawa called these curves hōshu-en 宝珠円 [9] and Kuwamoto Masaaki 

called them sen-en 尖円 in 1855 ([13, p. 285], [11, p. 60]). Hōshu is the Sino-Japanese translation of Sanskrit 

cintāmaṇi, ‘wish-fulfilling stone,’ a flame-shaped object found in Buddhist iconography; SJ sen is glossed togaru 

‘sharpen (to a point)’ in Japanese; SJ en ‘circle’ in these words connotes ‘closed curve’. 
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to 𝑎, we obtain a self-intersecting closed curve9 (Figure 6), which resembles what in astronomy 

is called an ANALEMMA.10  

 

To digress slightly, an analemma is a map of the positions of the sun in the sky as observed from 

a fixed point at the same (mean solar) time over the course of a year. E.g., Figure 7 shows the 

points on the earth the sun is directly overhead (at 12:00 local time) during a year; the fixed point 

over which the sun stands at noon twice during year is approximately 10° N 85° W. For a full 

discussion of the spherical trigonometry and theory underlying the concept of the analemma and 

the calculation of its shape using astronomical data, see [12]. Though the complete flame curve 

resembles an analemma, it is far from clear how far one can reduce the equations of a true 

analemma to that of a complete flame curve. 

 

The Cartesian equation of the flame curve is found be solving 𝑡 =
𝑎−𝑥

𝑎−𝑑
 for 𝑥, substituting the 

solution, 𝑎 − 𝑎𝑡 + 𝑑𝑡, for 𝑥 in 𝑦 =
±𝑏(𝑡−1)√(𝑎−(𝑎−𝑐)𝑡) 2−𝑥2

𝑎−(𝑎−𝑐)𝑡
; and finally substituting 1 −

𝑥

𝑘
 for 𝑡, 

which effectively redefines the XY plane so that the flame curve lies in that plane with its midline 

on the 𝑋 axis and its node at the origin. Its length is 𝑘 = √ℎ2 + (𝑎 − 𝑑)2, and its equation is 

𝑦2 =
𝑏2(𝑐−𝑑)(𝑘−𝑥)𝑥2(𝑐(𝑘−𝑥)+𝑑(𝑘−𝑥)+2𝑎𝑥)

𝑘2(𝑐(𝑘−𝑥)+𝑎𝑥)2 , which reduces to the simpler 𝑦2 =
4𝑎𝑏2𝑐(𝑘−𝑥)𝑥3

𝑘2(𝑐(𝑘−𝑥)+𝑎𝑥)2 

derived earlier when one substitutes −𝑐 for 𝑑 (the special case). 

 

 

                           
 

 

 

 

 
 
9 I hesitate to call this a figure-eight curve because EIGHT CURVE and FIGURE EIGHT CURVE are both names for a 

different quartic, the lemniscate of Gerono, 𝑥4 = 𝑎2(𝑥2 − 𝑦2), or, in parametric form, 𝑥 = 𝑎 sin 𝑡 and 𝑦 =
𝑎 sin 𝑡 cos 𝑡. 

10 Mikami [13, p. 285] remarks that if the diagonal plane crosses the far end of the wedge below the edge, the 

curve is an egg-shaped oval without “a point or cusp,” whereas if it cuts the edge between its endpoints, the point of 

the curve on the edge “is not a cusp . . . but a node.” This implies that he knew the complete curve included the loop 

above the edge. 

Figure 6. A complete flame curve Figure 7. An analemma 
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It will be recalled that a pegtop can be represented by the parametric equations 𝑥 = 𝑎(1 + sin 𝑡) 

and 𝑦 = 𝑏 cos 𝜃(1 + sin 𝑡).11 By contrast, the equations for the flame curve for the same 𝑎 and 𝑏 

are 𝑥 = 𝑎 (
𝑐

𝑎
+ sin 𝑡) and 𝑦 = 𝑏 cos 𝑡 (

𝑐

𝑎
+ sin 𝑡), with 𝑐, −𝑎 ≤ 𝑐 ≤ 𝑎. Eliminating 𝑡, these 

equations lead to 𝑎4𝑦2 = 𝑏2𝑥2(𝑎2 − (𝑥 − 𝑐)2). Once again, if and only if 𝑎 = 𝑐 do we obtain 

𝑎4𝑦2 = 𝑏2𝑥2(2𝑎𝑥 − 𝑥2), i.e. the Cartesian equation for the pegtop.12  

 

 

 

4. MORE DIFFICULT: A DIAGONAL SECTION CUTTING THE EDGE 

 

The problem described in [6, pp. 408–12] (Figure 8) concerns the generalization just introduced 

but seems to antedate the special case of 𝑑 = −𝑐, having been posted at a shrine in Ishikawa 

province in 1816. It asks for both the surface area of the flame curve and the volume of the part 

of the wedge cut off from the base. Fukagawa reports that, for 𝑎 = 4.5, 𝑏 = 1, 𝑐 = 5, ℎ = 11, 

and 𝑐 − 𝑑 = 1, Yoshida Tameyuki calculated that 𝑆 = 3.739466289 … and 𝑉 =
1.06577509040 … . 

 

 

 

 
 

If we proceed as before, the area of the flame curve is 𝑆 = 2𝑘 ∫
𝑦(𝑡)√[2𝑥(𝑡)−(𝑐−𝑑)𝑡](𝑐−𝑑)𝑡

𝑥(𝑡)

1

0
𝑑𝑡 with 

𝑘 = √ℎ2 + (𝑎 − 𝑑)2 and 𝑥(𝑡) = 𝑎 − 𝑡(𝑎 − 𝑐), 𝑦(𝑡) = 𝑏(1 − 𝑡) for the major and minor 

semiaxes, respectively, of each ellipse parallel to the base of the wedge. Since we know that the 

 
11 N.B. The parameter 𝑡 is not the angle from the X axis to the line rotated about the point (−𝑎, 0) in the locus 

construction of the pegtop found in standard reference works. For instance, 𝑡 = 0 corresponds to the slope 𝑏 𝑎⁄ , so 

the angle for 𝑥 = 𝑎 is tan−1 𝑏

𝑎
. 

12 The area of a complete flame curve is ∫ 𝑏 cos 𝑡 (
𝑐

𝑎
+ sin 𝑡)

𝑑

𝑑𝑡
𝑎 (

𝑐

𝑎
+ sin 𝑡)

2𝜋

0
𝑑𝑡 = ∫ 𝑎𝑏 (cos2 𝑡) (

𝑐

𝑎
+

2𝜋

0

sin 𝑡) 𝑑𝑡 = 𝜋𝑏𝑐, clearly not the same as the 𝜋𝑎𝑏 of the pegtop unless 𝑎 = 𝑐. Setting the limits of integration to 

(0, 𝜋) and (𝜋, 2𝜋) gives us the respective area of each lobe of the curve, viz. 
𝑏

6
(3𝜋𝑐 + 4𝑎) and 

𝑏

6
(3𝜋𝑐 − 4𝑎). 

Figure 8. General diagonal section 
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area of each elliptical segment is 𝐴 =
𝑥(𝑡)𝑦(𝑡)

2
(𝜃 − sin 𝜃), where θ is the central angle subtending 

the chord in which the diagonal and horizontal planes intersect, the volume of the wedge above 

the diagonal plane is 𝑉 = ∫ 𝐴
1

0
𝑑𝑡.13 Using these integrals and a program such as Mathematica, it 

is easy to verify that Yoshida’s 𝑆 and 𝑉 are correct for his given values. But because of the new 

variable 𝑑 and the need to express 𝜃 in terms of 𝑎, 𝑏, 𝑐, 𝑑, the corresponding indefinite integrals 

are complicated and unwieldy, certainly beyond the ability of the wasanka to have tackled 

directly. Using the standard technique of his time, Yoshida therefore converted the integrands 

into infinite series, each term of which he could integrate easily. In fact, he makes double use of 

this technique, producing for both 𝑆 and 𝑉an infinite series in which each term contains an 

infinite series of its own.  

 

Yoshida makes two changes in definitions to facilitate his calculations. Instead of 2𝑐 and 𝑐 − 𝑑, 

he uses 𝑐 for the whole axis and 𝑑 for the part of it cut off by the diagonal plane. He also 

interchanges 𝑡 and 1 − 𝑡, in effect reversing the sense of the 𝑍 axis. Thus, a plane through 𝑃 

parallel to the base of the wedge defines an ellipse with major axis of length 𝑐 − (𝑐 − 2𝑎)𝑡 and 

minor axis of length 2𝑏𝑡.  

 

Since 𝑃 lies on the axis of the flame curve, it divides the major axis of the ellipse into segments 

𝑓 = (𝑐 − 2𝑎)𝑡 and 𝑔 =  𝑑(1 − 𝑡). Letting 𝑛 =
𝑐−2𝑎

𝑐
 and, for convenience, 𝑤 = 1 − 𝑛𝑡 and 𝑥 =

1 − 𝑡, we have 𝑔 = 𝑑𝑥, 𝑓 + 𝑔 = 𝑐𝑤, and so 𝑓 = 𝑐𝑤 − 𝑑𝑥. Hence the chord through 𝑃 

perpendicular to the major axis has length 𝑙 =
2𝑏𝑡𝑘

𝑐𝑤
⋅ 2√(𝑐𝑤 − 𝑑𝑥)𝑑𝑥 =

4𝑏𝑡𝑘

𝑐𝑤
√𝑐 (𝑤 −

𝑑

𝑐
𝑥) 𝑑𝑥. 

Letting 𝑒 =
𝑑

𝑐
, we have 𝑙 =

4𝑏𝑡𝑘√𝑑𝑥

𝑐𝑤
√𝑐(𝑤 − 𝑒𝑥) =

4𝑏𝑡𝑘√𝑑𝑥

√𝑐𝑤
√1 −

𝑒

𝑤
𝑥 =

4𝑏𝑡𝑘√𝑒𝑥

√𝑤
√1 −

𝑒

𝑤
𝑥 . The 

variables 𝑤 and 𝑥 will soon be eliminated; Yoshida aims to produce series in 𝑒, 𝑛, and 𝑡 only. 

 

He begins by writing √1 −
𝑒

𝑤
𝑥 as 1 −

𝑒𝑥

2𝑤
−

𝑒2𝑥2

8𝑤2 −
𝑒3𝑥3

16𝑤3 −
5𝑒4𝑥4

128𝑤4 −
7𝑒5𝑥5

256𝑤5 − ⋯ , a series he likely 

derived by writing out the first few terms of the binomial expansion of (1 −
𝑒

𝑤
𝑥)

𝑝

 and then 

substituting 
1

2
 for 𝑝. He next introduces 𝑚 = 8𝑘√𝑒 so he can rewrite 

4𝑏𝑡𝑘√𝑒𝑥

√𝑤
 as 2𝑏𝑡𝑚

√𝑥

4√𝑤
.  

Distributing 
√𝑥

4√𝑤
 over the series, 𝑙 = 2𝑏𝑡𝑚 (

1

4

𝑥1 2⁄

𝑤1 2⁄ −
𝑒𝑥3 2⁄

8𝑤3 2⁄ −
𝑒2𝑥5 2⁄

32𝑤5 2⁄ −
𝑒3𝑥7 2⁄

64𝑤7 2⁄ −
5𝑒4𝑥9 2⁄

512𝑤9 2⁄ −

7𝑒5𝑥11 2⁄

1024𝑤11 2⁄ − ⋯ ), or, restoring 1 − 𝑡 and 1 − 𝑛𝑡 for 𝑥 and 𝑤, respectively,  

 

 

𝑙 = 2𝑏𝑚 [
(1 − 𝑡)1 2⁄ 𝑡

4(1 − 𝑛𝑡)1 2⁄
−

𝑒(1 − 𝑡)3 2⁄ 𝑡

8(1 − 𝑛𝑡)3 2⁄
−

𝑒2(1 − 𝑡)5 2⁄ 𝑡

32(1 − 𝑛𝑡)5 2⁄
−

𝑒3(1 − 𝑡)7 2⁄ 𝑡

64(1 − 𝑛𝑡)7 2⁄
−

5𝑒4(1 − 𝑡)9 2⁄ 𝑡

512(1 − 𝑛𝑡)9 2⁄

−
7𝑒5(1 − 𝑡)11 2⁄ 𝑡

1024(1 − 𝑛𝑡)11 2⁄
− ⋯ ]. 

 

 
13 Incidentally, by setting 𝜃 to 2𝜋, one easily finds that the volume of the whole wedge is 

𝑏𝜋

6
(2𝑎 + 𝑐). 
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Yoshida next replaces the power of 
1

√1−𝑛𝑡
 in each term with its own infinite series:  

 

𝑙 = 2𝑏𝑚 [
1

4
(1 − 𝑡)1 2⁄ 𝑡 (1 +

𝑛𝑡

2
+

3𝑛2𝑡2

8
+

5𝑛3𝑡3

16
+

35𝑛4𝑡4

128
+

63𝑛5𝑡5

256
+ ⋯ )

−
𝑒

8
(1 − 𝑡)3 2⁄ 𝑡 (1 +

3𝑛𝑡

2
+

15𝑛2𝑡2

8
+

35𝑛3𝑡3

16
+

315𝑛4𝑡4

128
+

693𝑛5𝑡5

256
+ ⋯ )

−
𝑒2

32
(1 − 𝑡)5 2⁄ 𝑡 (1 +

5𝑛𝑡

2
+

35𝑛2𝑡2

8
+

105𝑛3𝑡3

16
+

1155𝑛4𝑡4

128
+

3003𝑛5𝑡5

256
+ ⋯ )

−
𝑒3

64
(1 − 𝑡)7 2⁄ 𝑡 (1 +

7𝑛𝑡

2
+

63𝑛2𝑡2

8
+

231𝑛3𝑡3

16
+

3003𝑛4𝑡4

128
+

9009𝑛5𝑡5

256
+ ⋯ ) − ⋯ ] .

 

 

Having distributed all the factors except powers of 𝑒 over each series, he can integrate term by 

term to get  

 

𝑆 = 2𝑏𝑚 [
1

15
+

2𝑛

105
+

𝑛2

105
+

4𝑛3

693
+

5𝑛4

1287
+

2𝑛5

715
…

−𝑒 (
1

70
+

𝑛

105
+

𝑛2

154
+

2𝑛3

429
+

𝑛4

286
+

3𝑛5

1105
… )

−𝑒2 (
1

504
+

5𝑛

2772
+

5𝑛2

3432
+

𝑛3

858
+

5𝑛4

5304
+

𝑛5

1292
… )

−𝑒3 (
1

1584
+

7𝑛

10296
+

7𝑛2

11440
+

7𝑛3

13260
+

7𝑛4

15504
+

𝑛5

2584
… ) − ⋯ ] .

 

 

Turning to the volume cut off by the diagonal plane, Yoshida’s strategy is to slice it with planes 

parallel to the base of the wedge and sum up the areas of the elliptical segments formed by them. 

If the major axis of one of these ellipses is 𝐷 and the area of the related circular segment is 𝑆′, 

then 𝑆′′ = 𝑆′ 2𝑏𝑡

𝐷
. Yoshida therefore begins with a formula for 𝑆′ assuming it has a sagitta 𝑔. The 

formula he gives, however, seems to come out of the blue: letting 𝛼 = 𝑔/𝐷,  

 

𝑆′ = 4𝑔√𝑔𝐷 (
1

3
−

𝛼

10
−

𝛼2

56
−

𝛼3

144
−

5𝛼4

1408
−

7𝛼5

3328
… ). 

 

Unfortunately, there is a gap at this point in [6], so we must figure out on our own how Yoshida 

got this series for 𝑆′.  Below, I use trigonometry to do so, though Yoshida probably would have 

taken a different route. 

 

Denote the series in α as 𝑠. We know the area of the segment is 
𝐷2

8
(𝜃 − sin 𝜃) where 𝜃 is the 

angle subtending the segment chord. Now, sin
𝜃

2
=

√(𝐷−𝑔)𝑔

𝐷 2⁄
 and cos

𝜃

2
=

𝐷 2⁄ −𝑔

𝐷 2⁄
, so, from the 

identity sin 𝜃 = 2 sin
𝜃

2
cos

𝜃

2
 , we have sin 𝜃 =

4(𝐷−2𝑔)√(𝐷−𝑔)𝑔

𝐷2
. Substituting 𝐷𝛼 for 𝑔, this 
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becomes sin 𝜃 = 4(1 − 2𝛼)√𝛼(1 − 1𝛼). Denoting this as 𝜓, we have 𝜃 − sin 𝜃 = sin–1 𝜓 − 𝜓. 

Since for any real 𝑥, sin−1 𝑥 = ∑
(2𝑛−1)‼𝑥2𝑛+1

(2𝑛)‼(2𝑛+1)
∞
𝑖=0 , we have sin–1 𝜓 − 𝜓 = ∑

(2𝑛−1)‼𝜓2𝑛+1

(2𝑛)‼(2𝑛+1)
∞
𝑖=1 , so 

𝑆′ =
𝐷2

8
(∑

(2𝑛−1)‼𝜓2𝑛+1

(2𝑛)‼(2𝑛+1)
∞
𝑖=1 ) =

𝐷2

8
(

32𝛼3 2⁄

3
−

16𝛼5 2⁄

5
−

4𝛼7 2⁄

7
−

2𝛼9 2⁄

9
−

5𝛼11 2⁄

44
−

7𝛼13 2⁄

104
− ⋯ ). Hence 

𝑆′

4𝐷2𝛼3 2⁄  
=

1

3
−

𝛼

10
−

𝛼2

56
−

𝛼3

144
−

5𝛼4

1408
−

7𝛼5

3328
− ⋯ = 𝑠. Substituting 𝑔 for 𝐷𝛼, we find that 𝑆′ =

4𝑔√𝑔𝐷𝑠, just as Yoshida asserted.  

 

Now, using the same notation as in the computation of the area 𝑆 of the flame curve, Yoshida 

replaces 𝑔 and 𝐷 with 𝑑𝑥 and 𝑐𝑤, respectively, to get 

 

 

𝑆′′ = 8𝑏𝑡𝑑𝑥√𝑐𝑑𝑤𝑥 (
1

3
−

𝑑𝑥

10𝑐𝑤
−

𝑑2𝑥2

56𝑐2𝑤2
−

𝑑3𝑥3

144𝑐3𝑤3
−

5𝑑4𝑥4

1408𝑐4𝑤4
− ⋯ ) 

= 8𝑏𝑡𝑑√𝑒 (
𝑥3 2⁄

3√𝑤
−

𝑒𝑥5 2⁄

10𝑤3 2⁄
−

𝑒2𝑥7 2⁄

56𝑤5 2⁄
−

𝑒3𝑥9 2⁄

144𝑤7 2⁄
−

5𝑒4𝑥11 2⁄

1408𝑤9 2⁄
− ⋯ ) 

= 32𝑏𝑑√𝑒 [
(1 − 𝑡)3 2⁄ 𝑡

12√1 − 𝑛𝑡
−

𝑒(1 − 𝑡)5 2⁄ 𝑡

40(1 − 𝑛𝑡)3 2⁄
−

𝑒2(1 − 𝑡)7 2⁄ 𝑡

224(1 − 𝑛𝑡)5 2⁄
−

𝑒3(1 − 𝑡)9 2⁄ 𝑡

576(1 − 𝑛𝑡)7 2⁄

−
5𝑒4(1 − 𝑡)11 2⁄ 𝑡

5632(1 − 𝑛𝑡)9 2⁄
− ⋯ ]. 

 

 

Factoring out powers of 1 − 𝑡 and 𝑒, he expands each of  
𝑡

12√1−𝑛𝑡
,

−𝑡

40(1−𝑛𝑡)3 2⁄ ,
−𝑡

224(1−𝑛𝑡)5 2⁄ , ⋯  

into its own series. Letting 𝜔 = 8𝑑√𝑒ℎ, this produces  

 

𝑆′′ = 2𝑏𝜔 [(1 − 𝑡)3 2⁄ (
𝑡

12
+

𝑛𝑡2

24
+

𝑛2𝑡3

32
+

5𝑛3𝑡4

192
+ ⋯ )

−𝑒(1 − 𝑡)5 2⁄ (
𝑡

40
+

3𝑛𝑡2

80
+

3𝑛2𝑡3

64
+

7𝑛3𝑡4

128
+ ⋯ )

−𝑒2(1 − 𝑡)7 2⁄ (
𝑡

224
+

5𝑛𝑡2

448
+

5𝑛2𝑡3

256
+

15𝑛3𝑡4

512
+ ⋯ )

−𝑒3(1 − 𝑡)9 2⁄ (
𝑡

576
+

7𝑛𝑡2

1152
+

7𝑛2𝑡3

512
+

77𝑛3𝑡4

3072
+ ⋯ ) − ⋯ ] .

  

 

Notice that, after distributing powers of √1 − 𝑡 in the series, all the integrands are of the form 

𝑛𝑝−1𝑡𝑝(√1 − 𝑡)
𝑞
 with positive integers 𝑝, 𝑞. Yoshida is able to integrate them term by term as 

before and thus obtains 

 

𝑉 = 2𝑏𝜔 [
1

105
+

2𝑛

945
+

𝑛2

1155
+

4𝑛3

9009
+ ⋯ 
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−𝑒 (
1

630
+

𝑛

1155
+

𝑛2

2002
+

2𝑛3

6435
+ ⋯ ) 

−𝑒2 (
1

5544
+

5𝑛

36036
+

𝑛2

10296
+

𝑛3

14586
+ ⋯ ) 

−𝑒3 (
1

20592
+

7𝑛

154440
+

7𝑛2

194480
+

7𝑛3

251940
+ ⋯ ) − ⋯ ]. 

 

As a check, I used Mathematica to verify that Yoshida’s series of series indeed produce the 

values for 𝑆 and 𝑉 for his given values. 

 

 

5. FINISHING TOUCH 

 

The foregoing two problems give us a fine example of how wasanka went about what we 

retrospectively call integration and came up with tables like Hasegawa’s in [9]. The solutions 

show that Yoshida was an intrepid algebraist—but he’s not done! He concludes by taking 

advantage of the fact that the same chords, the lengths of which are integrated to find 𝑆, bound 

the elliptical segments he integrated to find 𝑉. On this basis, he describes the relationships 

among the coefficients that appear in the final series for 𝑆 and 𝑉, respectively, by means of the 

following three sequences: 

 
𝐴−1 = 0   

𝐴0 =
𝐵0

7
 𝐵0 =

1

15
  

𝐴1 =
𝐵1

9
 𝐵1 = 2𝑛𝐴0 − 𝑞1 𝑞1 =

𝑒

2 ⋅ 5 ⋅ 7
 

𝐴2 =
𝐵2

11
 𝐵2 = 3 (2𝐴1 −

1

9
𝑛𝐴0) 𝑛 − 𝑞2 𝑞2 =

1 ⋅ 5

4 ⋅ 9
𝑒𝑞1 

𝐴3 =
𝐵3

13
 𝐵3 = 5 (2𝐴2 −

3

11
𝑛𝐴1) 𝑛 − 𝑞3 𝑞3 =

3 ⋅ 7

6 ⋅ 11
𝑒𝑞2 

𝐴4 =
𝐵4

15
 𝐵4 = 7 (2𝐴3 −

5

13
𝑛𝐴2) 𝑛 − 𝑞4 𝑞4 =

5 ⋅ 9

8 ⋅ 13
𝑒𝑞3 

   

⋮ ⋮ ⋮ 
   

𝐴𝑘 =
𝐵𝑘

2𝑘 + 7
 𝐵𝑘 = (2𝑘 − 1) (2𝐴𝑘−1 −

2𝑘 − 3

2𝑘 + 5
𝑛𝐴𝑘−2) 𝑛 − 𝑞𝑘 𝑞𝑘 =

(2𝑘 − 3)(2𝑘 + 1)

2𝑘(2𝑘 + 5)
𝑒𝑞𝑘−1 

 

In terms of these sequences, 𝑉 = 2𝑏𝜔 ∑ 𝐴𝑖
∞
𝑖=0  and 𝑆 = 2𝑏𝑚 ∑ 𝐵𝑖

∞
𝑖=0 . This splendid result shows 

how Yoshida made the most of the techniques of integration available to him with, so to speak, 

one hand tied behind his back: he never measures an angle, invokes a trigonometric function, or 

worries about convergence, yet he gets the correct numerical answers to his problems. 

 

 

 

 

 



                                                                                  J. MARSHALL UNGER                                                                                  55 

 

 
 

REFERENCES 

 

[1] Fukagawa, Hidetoshi. 1975. Aichi no sangaku [Sangaku in Aichi prefecture]. Sūgaku-shi 

kenkyū, 65, 6–10. 

[2] Fukagawa, Hidetoshi. 1978a. Wasan ni okeru sekibun (sono 1) [Integration in wasan, part 

1]. Sūgaku-shi kenkyū, 77: 9–19. 

[3] Fukagawa, Hidetoshi. 1978b. Wasan ni okeru sekibun (sono 2) [Integration in wasan, part 

2]. Sūgaku-shi kenkyū, 79: 28–38. 

[4] Fukagawa, Hidetoshi. 1981. Wasan ni okeru sekibun (sono 3) [Integration in wasan, part 3]. 

Sūgaku-shi kenkyū, 88: 9–28. 

[5] Fukagawa, Hidetoshi. 1982. Wasan ni okeru sekibun (sono 4) [Integration in wasan, part 4]. 

Sūgaku-shi kenkyū, 95: 1–19. 

[6] Fukagawa, Hidetoshi, ed. 1983. Zoku-zoku sangaku no kenkyū [Yet more studies of 

sangaku]. Nagoya: Narumi dofūkai. 

[7] Fukagawa, Hidetoshi. 1987. Algebraic curves in Japan during the Edo period. Historia 

Mathematica 14, 235–42. 

[8] Fukagawa, Hidetoshi, Rothman, Tony, 2008. Sacred Mathematics: Japanese Temple 

Geometry. Princeton University Press, Princeton. 

[9] Hasegawa, Hiromu. 1844. Sanpō kyūseki tsūkō 求積通考 [Treatise on quadrature]. 5 

fascicles. Accessible at http://www.wasan.jp/archive/kyusekituko/kyusekituko.html.  

[10] Kotera, Hiroshi. 2003. Wasan ni okeru sekibun no gainen ni tsuite [On the concept of 

integration in wasan]. Sūri kaiseki kenkyūjo kōkyūroku [Bulletin of the Research Institute 

for Mathematical Sciences, Kyōto University] 1317, 162–66.  

[11] Kotera, Hiroshi, ed. n.d. (2005 or later). Sanpō kyūseki tsūkō chūshaku to kaisetsu [Notes 

and commentary on Sanpō kyūseki tsūkō] . Kinki wasan zemināru hōkokushū 14. 

Accessible at same location as Hasegawa 1844. 

[12] Lucht, Phil. 2013. Sun-Earth Kinematics, the Equation of Time, Insolation and the Solar 

Analemma. Available at http://user.xmission.com/~rimrock/Documents/Sun-Earth 

Kinematics, the Equation of Time, Insolation and the Solar Analemma.pdf. 

[13] Mikami, Yoshio. 1910 [1913]. The Development of Mathematics in China and Japan. 

Reprint of the 1913 edition = Abhandlugen zur Geschichte der mathematischen 

Wissenschaften, v. 30 (Leipzig: B. G. Teubner). New York: Chelsea Publishing Co. 

[14] Teixeira, F. Gomes. 1908. Traité des courbes spéciales remarquables planes et gauches. 

(Traduit de l’Espagnol, revu, and très augmenté.) Coïmbre [Portugal]: Imprimérie de 

l’Université.  

[15] Unger, J. Marshall. 2020. On the acceptance of trigonometry in wasan: evidence from a text 

of Aida Yasuaki. Historia Mathematica, vol. 52 pp. 51–65.  

[16] Wada, Yasushi. 1825 [1882]. Sōsei ien sanpō [Original methods for variant circles] 創製異

円算法. 

[17] Wallis, John. [1662] 1684. Cono-cuneus: or, the Shipwright’s Circular Wedge. That is, a 

Body resembling in part a Conus, in part a Cuneus, Geometrically considered. London. 


