Sangaku Journal of Mathematics (SJM) ©SJM ISSN 2534-9562 Volume 6 (2022), pp. 1-2 Received 3 January 2022. Published on-line 4 January 2022 web: http://www.sangaku-journal.eu/ (c)The Author(s) This article is published with open access¹.

A note on a generalization of a five circle problem

HIROSHI OKUMURA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

Abstract. We generalize a problem in Wasan geometry involving three smaller congruent circles touching two larger congruent circles and their common tangent.

Keywords. congruent circles in line

Mathematics Subject Classification (2010). 01A27, 51M04

1. INTRODUCTION

In this note we generalize the following problem in [2] (see Figure 1).

Problem 1. Two intersecting circles δ_1 and δ_2 of radius s touch a segment PQ at P and Q. The maximal circle touching δ_1 and δ_2 from their inside has radius r. A circle of radius r lying inside of the curvilinear triangle made by δ_1 , δ_2 and PQ touches δ_1 and δ_2 and the circle touching this circles and PQ at the midpoint also has radius r. Show that s = 9r.

A similar problem considered in [1] can also be found in [2].

¹This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

2. Generalization

We generalize the problem. If $\gamma_1, \gamma_2, \dots, \gamma_n$ are congruent circles such that γ_1 and γ_2 touch, and γ_i touches γ_{i-1} at the farthest point on γ_{i-1} from γ_1 for i = 3, $4, \dots, n$, then the circles are said to be congruent circles in line. We prove the next theorem (see Figure 2).

Theorem 1. For a rectangle ABCD with |BC| < |AB| = s, the circle of radius s and center A is denoted by δ . Let $\gamma_1, \gamma_2, \dots, \gamma_{n+1}$ be congruent circles of radius r in line such that γ_1 touches the segments BC and CD, γ_2 touches CD from the same side as γ_1 and γ_{n+1} touches δ externally. Let $\gamma'_1, \gamma'_2, \dots, \gamma'_n$ be congruent circles of radius r in line such that they touch the line CD from the same side as γ_1 and γ'_1 and γ'_n touch δ internally. The following statements are true. (i) s = 3(n+2)r.

(ii) There are two touching congruent circles of radius r touching CD from the same side as γ_1 such that one touches γ_{n+1} , and the other touches γ'_1 .

Proof. Assume that P and Q are the centers of γ_{n+1} and γ'_1 , respectively, and the line PQ meets DA in a point R. From $|AP|^2 - |PR|^2 = |AQ|^2 - |QR|^2$, we have $(r+s)^2 - (s-(2n+1)r)^2 = (s-r)^2 - ((n-1)r)^2$.

This implies s = nr or s = 3(n+2)r. Therefore we get (i), since s > nr. The part (ii) follows from the fact s - 2(n+1)r - nr = 4r.

References

- [1] H. Okumura, Solution to Problem 2018-3-2, Sangaku J. Math., 2 (2018) 54-56.
- [2] No author name, Enri Shinjutsu (圓理新術), no date, Digital Library Department of Mathematics Kyoto University.