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1. Introduction

If γ1, γ2, · · · , γn are congruent circles such that γ1 and γ2 touch, and γi touches
γi−1 at the farthest point on γi−1 from γ1 for i = 3, 4, · · · , n, then the circles are
called congruent circles in line (see Figure 1). If P (resp. Q) is the farthest point
on γ1 from γ2 (resp. γn from γn−1), then P (resp. Q) is called the initial (resp.
end) point. The line PQ is called the axis.
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Figure 1.

In this article we give some generalizations of the two problems involving five
circles proposed in [5] as Problems 3 and 4. The problems can be stated as
follows (see Figures 2 and 3, respectively).
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Figure 2: s = 5r.
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Figure 3: s = 5r.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
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Problem 1. For two circles δ1 and δ2 of radius s meeting in points P and Q, γ1,
γ2, γ3 are congruent circles in line of radius r with initial point P and end point
Q, where the circle γ2 touches δ1 and δ2 from inside of them. Show that s = 5r.

Problem 2. For two circles δ1 and δ2 of radius s meeting in points P and Q, the
circle of radius r and center at the midpoint of PQ touches δ1 and δ2 from inside
of them. If t is the chord of δ1 overlapping with the perpendicular to PQ at Q
and a circle of radius r touches t at the midpoint and the minor arc of δ1 cut by
t, show that s = 5r.

Generalizations of similar problems can be found in [1, 2, 3, 4].

2. The case s = |AB|+ r

In this paper, we consider a configuration consisting of a rectangle ABCD with
|AB| ≤ |BC| = s, and the circle δ of radius s and center A meeting the side
BC in a point P (see Figure 4). We denote the configuration by SP , and will
consider congruent circles in line of radius r with the axis BC. In this section we
consider the case in which only one circle of the congruent circles lies inside of δ
and touches δ with the condition s = |AB|+ r.
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Figure 4: SP .

Lemma 1. If s = |AB|+r for SP , then |BP | = (2z+1)r if and only if |CP | = 2z2r
for a positive real number z. In this event s = (z2 + (z + 1)2)r holds.

Proof. Assume s = |AB|+ r. If |BP | = (2z + 1)r, then (s− r)2 + ((2z + 1)r)2 =
s2 by the right triangle ABP . Solving the equation for s, we have s = (z2 +
(z + 1)2)r. Hence |CP | = s − |BP | = 2z2r. Conversely if |CP | = 2z2r, then
(s − r)2 + (s − 2z2r)2 = s2 by the same triangle. Solving the equation for s we
have s = (z2 + (z ± 1)2)r. Since (z2 + (z − 1)2)r < 2z2r = |CP | < s, we have
s = (z2 + (z + 1)2)r and |BP | = s− |CP | = (2z + 1)r. □

Problems 1 and 2 can be generalized as follows by Lemma 1 (see Figure 5).

Theorem 1. Assume that circles δ1 and δ2 have radius s and meet in points P
and Q and t is the chord of δ1 overlapping with the perpendicular to PQ at Q. If
the circle of radius r and center at the midpoint of PQ touches δ1 and δ2 from
insides of them, then the following statements (i) and (ii) are equivalent.
(i) There are 2n+ 1 congruent circles in line of radius r with initial point P and
end point Q.
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(ii) There are n2 congruent circles in line of radius r such that its initial point
coincides with the midpoint of t and the end point coincides with the midpoint of
the minor arc of δ1 cut by t.
(iii) If (i) or (ii) holds, then s = (n2 + (n+ 1)2)r holds.
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Figure 5: n = 2.

The theorem shows that the figures made by δ1 and δ2 in Problems 1 and 2 are
congruent.

3. The case where two circles of radius r lie inside of δ

In this section we consider the case in which exactly two circles of the congruent
circles in line lie inside of the circle δ and touch δ. We get the next theorem (see
Figure 6).
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Figure 6: n = 3.

Theorem 2. For SP , γ1, γ2, · · · , γn, · · · are congruent circles in line of radius r
with initial point B such that the circle γ1 touches δ and the center of γ1 lies on
the side BC. Then the following two statements (i) and (ii) are equivalent.
(i) γ1, γ2, · · · , γn are congruent circles in line with end point P .
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(ii) γ1, γ2, · · · , γn2 are congruent circles in line with end point C.
(iii) If (i) or (ii) is true, the following relation holds.

(1) s = 2n2r.

Proof. Assume (i). By the right triangles ABP and the right triangle made by A,
B and the center of γ1, we have s2 − (2nr)2 = (s − r)2 − r2. This gives (1), i.e.,
(ii) holds. Assume (ii). Then (1) holds. From the same right triangles, we have
(2n2r)2 − |BP |2 = (2n2r − r)2 − r2. This gives |BP | = 2nr, i.e., (i) holds. □
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Figure 7: n = 5.

We explicitly denote the circle δ and the radius s in Theorem 2 by δn and sn.
We can consider that δ0 is the point circle B and δ1 is the circle of radius 2r and
center B, and sn = sn−1 + 2(2n− 1)r holds (see Figure 7).

4. The case where n circles of radius r lie inside of δ

In this section we consider the case where exactly n circles of the congruent circles
in line lie inside of δ. We use the next theorem (see Figure 8).

Theorem 3. For a point Q on the segment BP in SP , let γ1, γ2, · · · , γn be
congruent circles in line with initial points P and endpoint Q. Then the reflection
of γ1 in the point Q touches δ internally if and only if |CP | = 2(2n− 1)|BQ|.

Proof. Let r be the radius of γ1. Then we obviously have

|BQ|+ 2nr + |CP | = s.

Let R be the center of the reflection of γ1. By the right triangle ABR, we get

|AR|2 = |AB|2 + (|CP |+ (4n− 1)r − s)2,

while from the right triangle ABP , we have

|AB|2 = s2 − (s− |CP |)2.
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Let
d = |AR|2 − (s− r)2.

Eliminating s, |AB| and |AR| from the four equations, we have

d = 2(|CP | − 2(2n− 1)|BQ|)r.
Therefore |AR| = s − r and |CP | = 2(2n − 1)|BQ| are equivalent. This proves
the theorem. □
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Figure 8: n = 3.

Considering the case n = 1 in Theorem 3, we get the next lemma.

Lemma 2. Assume Q is the point on the segment BP such that |PQ| = 2r for
SP . If γ0 is the circle of diameter PQ, and γ′ is the reflection of γ0 in the point
Q and touches δ, then
(i) |BQ| = zr and |CP | = 2zr are equivalent for a positive real number z.
(ii) If one of the relations in (i) holds, then s = (3z + 2)r.

By Lemma 2, the next theorem holds (see Figures 9 for (i) of the theorem and see
Figure 10 for (ii)). Problems 1 and 2 can be obtained if n = 1 in this theorem.
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Figure 9: n = 4.
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Figure 10: n = 3.

Theorem 4. For a point Q on the segment BP , γ0 is the circle of diameter PQ,
and γ0, γ1, γ2, · · · are congruent circles in line of radius r, where γ1 touches γ0 at
P . If γ′

i is the reflection of γi in the center of γ0 and γ′
1 touches δ, the following
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statements hold.
(i) If n is even, then γ1, γ2, · · · , γn are congruent circles in line with end point C
if and only if γ′

1, γ
′
2, · · · , γ′

n
2
are congruent circles in line with end point B.

(ii) If n is odd, then γ1, γ2, · · · , γn are congruent circles in line with end point C
if and only if the center of γ′

n+1
2

coincides with B.

(iii) If (i) or (ii) holds, then s = (3n+ 2)r holds.
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