A note on circles touching two circles in a Pappus chain: Part 2

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract

A result similar to the result for the circles touching two consecutive circles at their point of tangency in a Pappus chain in [2] is given.

Keywords. Pappus chain, orthogonal figures as touching figures, $1 / 0=0$.
Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction

In [2] we have considered a chain of circles whose members touch two internally touching circles β and γ, and a circle touching two consecutive circles in the chain at their point of tangency. Then we have showm that a simple relationship between the radius of the circle and the radii of β and γ holds using division by zero $1 / 0=0$ [4]. In this note we consider a chain of circles whose members touch two externally touching circles, and show that a similar relationship is also true. The author considers that such a chain can also be called a Pappus chain.

2. Result

Let C be a point on a segment $A B$ such that $|A C|=2 b,|B C|=2 a$ and $c=a+b$ $(a \neq b)$. The semicircles of diameters $B C$ and $A C$ constructed on the same side of $A B$ are denoted by α and β, respectively. $\gamma_{1}, \gamma_{2}, \gamma_{3}, \cdots$ are the chain of circles touching α and β such that γ_{1} touches the line $A B$ (see Figures [1 and 2). If we invert the figure in the circle with center C orthogonal to γ_{n}, the images of γ_{1}, γ_{2}, γ_{3}, \cdots are the circles congruent to γ_{n} and their centers lie on the perpendicular from the center of γ_{n} to $A B$. Therefore there are circles $\delta_{1}, \delta_{2}, \delta_{3}, \cdots$ such that δ_{i} touches γ_{i} and γ_{i+1} at their point of tangency and $A B$ at C, where we define δ_{0} is the line $A B$. Let d_{n} be the radius of δ_{n}. We have the next theorem.

[^0]Theorem 1. For a non-negative integer n, we have

$$
d_{n}=\frac{a b}{c n} .
$$

Figure 1.
If we use a rectangular coordinate system with origin C so that the farthest point on α has coordinates (a, a), the proof is similar to that of Theorem 1 in [2]. Therefore we omit the proof. Notice that the theorem is true in the case $n=0$, since $1 / 0=0$ and $d_{0}=0$, because a line can be considered to be a circle of radius 0 as stated in [2, Section 2].

Figure 2.

Assume that two figures have a point P in common and the angle between the tangent lines at P equals θ. Then the two figures are said to touch at P if and only if $\tan \theta=0$. While the angle between the tangent lines at the point of intersection equals $\frac{\pi}{2}$ for two orthogonal figures and $\tan \frac{\pi}{2}=0$ by $1 / 0=0$. Therefore two orthogonal figures can be considered to touch each other [3], [4]. This implies that the line $A B$ can be considered to touch the semicircles α, β and γ_{1}. Therefore it is appropriate to denote the line $A B$ by γ_{0} (see Figure (2).
Let γ be the semicircle of diameter $A B$ constructed on the same side of $A B$ as α. The area bounded by the semicircles α, β and γ is called an arbelos. Circles of radius $a b / c$ are called Archimedean circles of the arbelos. Especially the Archimedean circle orthogonal to α and β, i.e., it touches $A B$ at C, is called the Bankoff circle [1]. Therefore Theorem [1 shows that δ_{1} is the Bankoff circle.

Acknowledgment. The author expresses his thanks to Professor Saburou Saitoh for offering the information γ_{0} overlapping with the line $A B$ stated in the last paragraph. Saburou Saitoh is the founder of division by zero $1 / 0=0$ and its generalization called division by zero calculus [4].

References

[1] L. Bankoff, Are the twin circles of Archimedes really twins?, Math. Mag., 72 (1974) 214218.
[2] H. Okumura, A note on circles touching two circles in a Pappus chain, Sangaku J. Math., 6 (2022) 19-22.
[3] H. Okumura, Geometry and division by zero calculus, Int. J. Division by Zero Calculus, 1 (2021) 1-36.
[4] S. Saitoh, Introduction to the Division by Zero Calculus, 2021, Scientific Research Publ., Inc..

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

