Sangaku Journal of Mathematics (SJM) ©SJM ISSN 2534-9562 Volume 6 (2022), pp. 3-5 Received 5 January 2022. Published on-line 7 January 2022 web: http://www.sangaku-journal.eu/ ©The Author(s) This article is published with open access¹.

A note on a generalization of a five circle problem: Part 2

HIROSHI OKUMURA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

Abstract. We generalize a problem in Wasan geometry involving three smaller congruent circles touching two larger congruent circles and their common tangent.

Keywords. congruent circles in line

Mathematics Subject Classification (2010). 01A27, 51M04

1. INTRODUCTION

In this note we generalize the following problem in [3] (see Figure 1).

Problem 1. Two intersecting circles δ_1 and δ_2 of radius *s* have an external common tangent *t*, and the maximal circle touching the two circles from the inside has radius *r*. Two touching circles of radius *r* touch *t* from the same side as δ_1 and one touches δ_1 externally and the other touches δ_2 externally. Show that $r = (1 - \sqrt{3/4})s$ holds.

Similar problems have considered in [1, 2], which can also be found in [3].

¹This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

2. Generalization

In this section we generalize the problem. We use the next lemma.

Lemma 1. For a square ABCD with |AB| = s, let δ be a circle of radius s and center A. A circle of radius r touches the segment CD at a point P form the same side as δ and also touches δ externally. Another circle of radius s' touches the segments BC and CP and also touches the circle of radius r externally. If |CP|/r + 1 = d, then we have

(1)
$$s = (\sqrt{d} + 1)^2 r$$
 and $s' = (\sqrt{d} - 1)^2 r$.

Proof. From $s = |CP| + 2\sqrt{sr} = (d-1)r + 2\sqrt{sr}$, we have $s = (\sqrt{d} \pm 1)^2 r$ (see Figure 2). Similarly from $s' = (d-1)r - 2\sqrt{s'r}$, we have $s' = (\sqrt{d} \pm 1)^2 r$. Since s > s', we have (1).

If $\gamma_1, \gamma_2, \dots, \gamma_n$ are congruent circles such that γ_1 and γ_2 touch, and γ_i touches γ_{i-1} at the farthest point on γ_{i-1} from γ_1 for $i = 3, 4, \dots, n$, then the circles are said to be *congruent circles in line*. The problem is generalized as follows:

Theorem 1. Two intersecting circles δ_1 and δ_2 of radius s have an external common tangent t, and the maximal circle touching the two circles from the inside has radius r. $\gamma_1, \gamma_2, \dots, \gamma_n$ are congruent circles of radius r in line lying inside of the curvilinear triangle made by δ_1, δ_2 and t such that they touch t and γ_1 touches δ_1 and γ_n touches δ_2 . Then the following statements are true. (i) $s = (\sqrt{n+1}+1)^2 r$.

(ii) s/r is an integer if and only if there is an integer j > 1 such that n = (j-1)(j+1). In this event $s/r = (j+1)^2$.

(iii) If n is an odd integer such that n = 2k - 1 for a positive integer k, then there are circles $\gamma'_1, \gamma'_2, \dots, \gamma'_k$ of radius r in line such that $\gamma'_k = \gamma_k$ and γ'_1 touches δ_1 and δ_2 externally.

Proof. The distance between the centers of γ_1 and γ_n equals 2(n-1)r (see Figure 3). Therefore the distance between the center of γ_n and the perpendicular to t touching δ_2 and the maximal circle touching δ_1 and δ_2 equals (n-1)r + r = nr. Therefore (i) is proved by Lemma 1. The part (ii) is obvious. Let ρ be the reflection in the line joining the centers of δ_1 and γ_k , and let $\gamma'_i = \gamma^{\rho}_i$ for $i = 1, 2, \dots, k$.

Then $\gamma'_1, \gamma'_2, \dots, \gamma'_k$ form congruent circles in line. Since the circles δ_1 and γ_k are fixed by ρ , the circle γ'_1 touches δ_1 (see Figure 4). It also touches δ_2 by the symmetry of the figure. This proves (iii).

Figure 4: k = 3.

References

- H. Okumura, A note on a generalization of a five circles problem, Sangaku J. Math., 6 (2022) 1–2.
- [2] H. Okumura, Solution to Problem 2018-3-2, Sangaku J. Math., 2 (2018) 54-56.
- [3] No author name, Enri Shinjutsu (圓理新術), no date, Digital Library Department of Mathematics Kyoto University.