Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 6 (2022), pp. 31-33
Received 18 June 2022. Published on-line 26, June 2022.
web: http://www.sangaku-journal.eu/
©The Author(s) This article is published with open access ${ }^{1}$.

An Alternative Proof of the Japanese Theorem

Kousik Sett
Hooghly, Near Kolkata, West Bengal, India
e-mail: kousik.sett@gmail.com

Abstract. We will prove the famous Japanese quadrilateral theorem and a related problem by applying a well-known sangaku problem.

Keywords. Japanese Theorem, Sangaku, Wasan Geometry.
Mathematics Subject Classification (2010). 51M04.

1. Introduction

The following sangaku problem is well known in Wasan geometry (See Figure 1). Let D be a point on side $B C$ of $\triangle A B C, h$ be the distance from A to $B C . O_{1}\left(r_{1}\right)$, $O_{2}\left(r_{2}\right), O(r)$ be the respective incircles of triangles $A B D, A C D$, and $A B C$. Then we have

$$
\begin{equation*}
1-\frac{2 r}{h}=\left(1-\frac{2 r_{1}}{h}\right)\left(1-\frac{2 r_{2}}{h}\right) \quad \text { or equivalently, } \quad r=r_{1}+r_{2}-\frac{2 r_{1} r_{2}}{h} \tag{1}
\end{equation*}
$$

Figure 1

A proof can be found in [[1], pp. 33-34].

[^0]We will show an easy proof of the famous Japanese quadrilateral theorem that can be deduced from this problem. Also, a related problem proposed by Dr. Stanley Rabinowitz [2] can be solved by the same strategy. We will solve both problems.

2. Proof of the Japanese quadrilateral theorem

The Japanese quadrilateral theorem can be stated as follows (see Figure 2).
$A_{1} A_{2} A_{3} A_{4}$ is a cyclic quadrilateral. The circle $O_{1}\left(r_{1}\right)$ is inscribed in triangle $A_{4} A_{1} A_{2}$, the circle $O_{2}\left(r_{2}\right)$ is inscribed in triangle $A_{1} A_{2} A_{3}$, the circle $O_{3}\left(r_{3}\right)$ is inscribed in triangle $A_{2} A_{3} A_{4}$, and the circle $O_{4}\left(r_{4}\right)$ is inscribed in triangle $A_{3} A_{4} A_{1}$. Show that

$$
r_{1}+r_{3}=r_{2}+r_{4}
$$

Figure 2

Proof. Assume $P=A_{1} A_{3} \cap A_{2} A_{4}$. We will draw incircles of radii $\rho_{1}, \rho_{2}, \rho_{3}$, and ρ_{4} of triangles $A_{1} P A_{4}, A_{2} P A_{1}, A_{3} P A_{2}$, and $A_{4} P A_{3}$, respectively (See figure 3). h_{1}, h_{3} are the perpendiculars drawn from A_{1} and A_{3} on $A_{2} A_{4}$, respectively. Also, h_{2}, h_{4} are the perpendiculars drawn from A_{2} and A_{4} on $A_{1} A_{3}$, respectively.

Figure 3

From similar triangles $A_{1} P A_{4}$ and $A_{2} P A_{3}$, we get

$$
\begin{equation*}
\frac{\rho_{1}}{h_{1}}=\frac{\rho_{3}}{h_{2}} \quad \text { which implies } \quad \frac{\rho_{1} \rho_{2}}{h_{1}}=\frac{\rho_{2} \rho_{3}}{h_{2}}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\rho_{1}}{h_{4}}=\frac{\rho_{3}}{h_{3}} \quad \text { which implies } \quad \frac{\rho_{4} \rho_{1}}{h_{4}}=\frac{\rho_{3} \rho_{4}}{h_{3}} . \tag{3}
\end{equation*}
$$

Applying (1) on triangles $A_{4} A_{1} A_{2}, A_{1} A_{2} A_{3}, A_{2} A_{3} A_{4}$ and $A_{3} A_{4} A_{1}$ successively, we get

$$
\begin{array}{lll}
r_{1}=\rho_{1}+\rho_{2}-\frac{\rho_{1} \rho_{2}}{h_{1}}, & r_{2}=\rho_{2}+\rho_{3}-\frac{\rho_{2} \rho_{3}}{h_{2}}, \\
r_{3}=\rho_{3}+\rho_{4}-\frac{\rho_{3} \rho_{4}}{h_{3}}, & \text { and } & r_{4}=\rho_{4}+\rho_{1}-\frac{\rho_{4} \rho_{1}}{h_{4}} .
\end{array}
$$

Therefore, by virtue of (2) and (3), we get

$$
r_{1}-r_{2}=\rho_{1}-\rho_{3}=r_{4}-r_{3} \quad \text { which implies } \quad r_{1}+r_{3}=r_{2}+r_{4} .
$$

3. Solution to Dr. Rabinowitz's Problem

Dr. Rabinowitz's problem [2] can be stated as follows (see Figure 4). We will use the previous notations.
$A_{1} A_{2} A_{3} A_{4}$ is a cyclic quadrilateral. The circle $O_{1}\left(r_{1}\right)$ is inscribed in triangle $A_{4} A_{1} A_{2}$ and the circle $O_{2}\left(r_{2}\right)$ is inscribed in triangle $A_{1} A_{2} A_{3}$. If $P=A_{1} A_{3} \cap A_{2} A_{4}$ and the circle $O_{1}^{\prime}\left(\rho_{1}\right)$ is inscribed in triangle $A_{1} P A_{4}$ and circle $O_{3}^{\prime}\left(\rho_{3}\right)$ is inscribed in triangle $A_{2} P A_{3}$. Show that

$$
r_{1}+\rho_{3}=\rho_{1}+r_{2} .
$$

Figure 4

Proof. Observe that in the previous proof, the relation

$$
r_{1}-r_{2}=\rho_{1}-\rho_{3}
$$

gives Dr. Rabinowitz's result.

References

[1] Hidetoshi Fukagawa and John Rigby, Traditional Japanese Mathematics Problems of the 18th EJ 19th Centuries, SCT Publishing, Singapore, 2002.
[2] https://www.facebook.com/photo/?fbid=10224010870491576\&set=gm. 4340635776050095

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

