
Sangaku Journal of Mathematics (SJM) c⃝SJM
ISSN 2534-9562
Volume 6 (2022), pp.34-36
Received 25 June 2022. Published on-line 29 June 2022
web: http://www.sangaku-journal.eu/
c⃝The Author(s) This article is published with open access1.

A simple method to explore the relationships
between six areas of a cevasix configuration

Li Ting Hon Stanford
M7, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong

e-mail: tinghonli@yahoo.com.hk

Abstract. If P is a point inside △ABC, then the cevians through P divide
△ABC into six small triangles. We introduce a simple method to explore the
relationships between the areas of these triangles.
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1. Introduction

Let P be a point inside △ABC, then the cevians through P divide △ABC into
six small triangles. Let the areas of the six small triangles be K1 to K6 as shown in
Figure 1 and let the area of △ABC be K. Rabinowitz explored the relationships
between the areas of the six triangles in [1]. He discovered the relationships with
the help of computers. In this paper, we give a simple approach to explore the
relationships between the six small triangles that does not require the use of
computers.

2. Expressing K4, K5, K6 and K in terms of K1, K2, K3

Let the areas of △PBC, △PCA and △PAB be x, y and z respectively. Note
that AF : FB = y : x, BD : DC = z : y, CE : EA = x : z. We can express the
areas of six small triangles and the area of △ABC in terms of x, y and z. The
expressions are as follows: K1 =

xz
y+z

, K2 =
xy
y+z

, K3 =
xy
x+z

, K4 =
yz
x+z

, K5 =
yz
x+y

,
K6 =

xz
x+y

, K = x+ y + z.

Solving the first three equations gives the following results.

(1) x = K1 +K2,
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Figure 1. The cevasix configuration

(2) y =
K2K3(K1 +K2)

K1K2 −K1K3 +K2
2

,

(3) z =
K1K3(K1 +K2)

K1K2 −K1K3 +K2
2

.

By (1), (2), (3) and the expressions of K4, K5, K6 and K in terms of x, y and z,
we have:

(4) K4 =
K1K

2
3

K1K2 −K1K3 +K2
2

,

(5) K5 =
K1K2K

2
3(K1 +K2)

(K1K2 −K1K3 +K2
2)(K1K2 −K1K3 +K2

2 +K2K3)
,

(6) K6 =
K1K3(K1 +K2)

K1K2 −K1K3 +K2
2 +K2K3

,

(7) K =
K2(K1 +K2)(K1 +K2 +K3)

K1K2 −K1K3 +K2
2

.

(7) is the solution for the problem on a wooden tablet hung by Sugita Naotake in
the Izanagi shrine in the Mie Prefecture of Japan in 1835 [2].
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3. Expressing K3, K5, K6 and K in terms of K1, K2, K4

Similarly, we can use this technique to discover formulae which express K3, K5,
K6 and K in terms of K1, K2, K4.

By solving the equationsK1 =
xz
y+z

,K2 =
xy
y+z

andK4 =
yz
x+z

, we have the following

results:

(8) x = K1 +K2,

(9) y =

√
K1K4 +

√
K4ω

2
√
K1

,

(10) z =
K1K4 +

√
K1K4ω

2K2

,

where ω =
√

4K1K2 +K1K4 + 4K2
2 .

By (8), (9), (10) and the expressions of K3, K5, K6 and K in terms of x, y and
z, we have:

(11) K3 =
K2(K1 +K2)(

√
K1K4 +

√
K4ω)√

K1(2K1K2 + 2K2
2 +K1K4 +

√
K1K4ω)

,

(12) K5 =

√
K1K4(

√
K1K4 + ω)2

2K2(2K
3
2
1 + 2

√
K1K2 +

√
K1K4 +

√
K4ω)

,

(13) K6 =
K1

√
K4(K1 +K2)(

√
K1K4 + ω)

K2(2K
3
2
1 + 2

√
K1K2 +

√
K1K4 +

√
K4ω)

,

(14) K =
(K1 +K2)(2

√
K1K2 +

√
K1K4 +

√
K4ω)

2
√
K1K2

.
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