A note on circles touching two circles in a Pappus chain: Part 3

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. A similar result to the results in [2, 3, 5] for a circle touching two consecutive circles at their point of tangency in a Pappus chain is given.

Keywords. Pappus chain, orthogonal figures as touching figures, $1 / 0=0$.
Mathematics Subject Classification (2010). 01A27, 51M04.

1. Introduction

In [2, 3, 5], we consider a chain of circles whose members touch two given touching circles, and consider a circle touching two consecutive circles in the chain at their point of tangency and the line passing through the centers of the given circles at their point of tangency (see Figures 11 and 2). Then we have shown that a simple relationship between the radius of the circle and the radii of the two given circles using division by zero $1 / 0=0$.

Figure 1.

Figure 2.

[^0]In this paper we consider a chain of circles whose members touch a given circle and its tangent. Then we will show that a similar relation also holds. We assume division by zero [1], [6]:

$$
\begin{equation*}
\frac{z}{0}=0 \text { for any real number } z \tag{1}
\end{equation*}
$$

2. Result

Let α be a circle of diameter $B C$ such that $|B C|=2 a$. We use a rectangular coordinate system with origin C such that one of the farthest points on α has coordinates (a, a). We use the next theorem.

Theorem 1 (4], [6]). The following statements holds.
(i) A line can be considered to be a circle of radius 0 and center at the origin.
(ii) Two orthogonal figures can be considered to touch each other.

Figure 3.

Figure 4.

The tangent of the circle α at the point C is denoted by h (see Figure (3).
Theorem 2. The following statements holds.
(i) A proper circle touches the circle α at a point different from C and the line h if and only if there is a non-zero real number z such that the center and the radius
of the circle are given by

$$
\begin{equation*}
\left(\frac{a}{z^{2}}, \frac{2 a}{z}\right), \frac{a}{z^{2}} . \tag{2}
\end{equation*}
$$

The circle determined by (2) is denoted by β_{z}.
(ii) Let β_{0} be the tangent of α at the point B. Two circles or a circle and a line β_{w} and β_{z} touch if and only if $|w-z|=1$ for real numbers w and z.
(iii) Let b_{z} be the radius of the circle β_{z}. Then the distance between the center of β_{z} and the line $B C$ equals $2|z| b_{z}$.

Proof. If a proper circle has radius and center given by (2), we can easily see that the distance between the centers of this circle and α equals $a+a / z^{2}$. Hence they touch. Conversely assume that a circle β touches α at a point different from C and h. Then there is a real number z such that the radius of β equals a / z^{2}. Then the circle, whose radius and center are given by (2), touches α at a point different from C and h as just we have shown. Therefore this circle coincides with β. This proves (i).

The line β_{0} touches $\beta_{ \pm 1}$ (see Figure (3). If $w \neq 0$ and $z \neq 0$, then β_{w} and β_{z} are proper circles and they touch if and only if

$$
\sqrt{\left(\frac{a}{w^{2}}-\frac{a}{z^{2}}\right)^{2}+\left(\frac{2 a}{w}-\frac{2 a}{z}\right)^{2}}=\frac{a}{w^{2}}+\frac{a}{z^{2}} .
$$

While we have

$$
\left(\frac{a}{w^{2}}-\frac{a}{z^{2}}\right)^{2}+\left(\frac{2 a}{w}-\frac{2 a}{z}\right)^{2}-\left(\frac{a}{w^{2}}+\frac{a}{z^{2}}\right)^{2}=\frac{4 a^{2}\left((w-z)^{2}-1\right)}{w^{2} z^{2}} .
$$

This proves (ii). The part (iii) follows from (i).
By (1) and Theorem 1 (i), the center and the radius of β_{0} are represented by (2) with $z=0$, and it touches α at point different from C and the line h. However all the lines have center at the origin and radius 0 by Theorem $\mathbb{1}(\mathrm{i})$, i.e., the line having center and radius given by (2) with $z=0$ is not uniquely determined.

The circles $\beta_{ \pm 1 / 2}$ touch the line $B C$. Let $\gamma_{z}=\beta_{z-\frac{1}{2}}$. Then the circles $\gamma_{0}=\beta_{-\frac{1}{2}}$ and $\gamma_{1}=\beta_{\frac{1}{2}}$ touch $B C$ (see Figure (4). We now show that a similar relation to the results in [2, 3, 5] holds.
Theorem 3. If δ_{z} is the circle touching the circles γ_{z} and γ_{z+1} at their point of tangency and the line $B C$ at C, then δ_{z} has radius

$$
\frac{a}{|z|}
$$

where we define that δ_{0} is the line $B C$.
Proof. If we invert the figure in the circle of center C orthogonal to γ_{z}, then γ_{z} is fixed, and γ_{z+1} is inverted into the circle congruent to γ_{z} whose center lies on the perpendicular from the center of γ_{z} to $B C$. Hence there is a line parallel to $B C$ touching the images of γ_{z} and γ_{z+1} at their point of tangency. Inverting this line in the same circle of inversion, we get the circle touching γ_{z} and γ_{z+1} at their point of tangency and $B C$ at C. This is the circle δ_{z}. Let d_{z} be the radius of δ_{z}. The circle γ_{z} has center of coordinates $\left(a /\left(z-\frac{1}{2}\right)^{2}, 2 a /\left(z-\frac{1}{2}\right)\right)$ and radius $a /\left(z-\frac{1}{2}\right)^{2}$.

If $z>0$, then δ_{z} has center of coordinates $\left(0, d_{z}\right)$ and the circles γ_{z} and δ_{z} touch externally. Hence we have

$$
\left(\frac{a}{(z-1 / 2)^{2}}\right)^{2}+\left(\frac{2 a}{z-1 / 2}-d_{z}\right)^{2}=\left(\frac{a}{(z-1 / 2)^{2}}+d_{z}\right)^{2}
$$

Solving the equation for d_{z}, we have $d_{z}=\frac{a}{z}$. If $z<0$, then δ_{z} has center of coordinates $\left(0,-d_{z}\right)$, and γ_{z} and δ_{z} touch internally. Therefore we have

$$
\left(\frac{a}{(z-1 / 2)^{2}}\right)^{2}+\left(\frac{2 a}{z-1 / 2}+d_{z}\right)^{2}=\left(\frac{a}{(z-1 / 2)^{2}}-d_{z}\right)^{2}
$$

Solving the equation for d_{z}, we have $d_{z}=-\frac{a}{z}$. The theorem is true in the case $z=0$ by (11) and Theorem(i). The proof is now complete.

We can consider that the line $B C$ touches the circle α at point different from C (which is B) and the line h by Theorem I(ii). We denote this line by $\beta_{\overline{0}}$, i.e., $\delta_{0}=\beta_{\overline{0}}$ (see Figures (3) and (4). The point C can be considered to touch α and h at C, which is the limiting figure when the circles $\beta_{ \pm z}, \gamma_{ \pm z}$ and $\delta_{ \pm z}$ approach to C in the case $z \rightarrow \infty$. The line h can also be considered to touch α and h.

We have shown that the chain $\cdots, \beta_{-1}, \beta_{0}, \beta_{1}, \cdots$ has similar properties to those of the chains whose members touch two given touching circles [2, 3, 5]. Therefore it seems to be appropriate to still call this a Pappus chain.

References

[1] M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$, Int. J. Appl. Math., 27(2) (2014) 191-198.
[2] H. Okumura, A note on circles touching two circles in a Pappus chain: Part 2, Sangaku J. Math., 6 (2022) 23-25.
[3] H. Okumura, A note on circles touching two circles in a Pappus chain, Sangaku J. Math., 6 (2022) 19-22.
[4] H. Okumura, Geometry and division by zero calculus, Int. J. Division by Zero Calculus, 1 (2021) 1-36.
[5] H. Okumura, Solution to Problem 2017-1-6 with division by zero, Sangaku J. Math., 4 (2020) 73-76.
[6] S. Saitoh, Introduction to the Division by Zero Calculus, 2021, Scientific Research Publ., Inc..

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

