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Abstract. We generalize a problem in Wasan geometry involving three smaller
congruent circles touching two larger congruent circles and their common tangent.
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1. Introduction

In [3], we generalized a problem involving five circles proposed in [4]. In this note
we give another generalization of the same problem. The problem is stated as
follows (see Figure 1).
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Figure 1: s = 6r.

Problem 1. For two intersecting circles δ1 and δ2 of radius s with an external
common tangent t, two touching congruent circles of radius r touch δ1 and δ2
internally. If the inradius of the curvilinear triangle made by δ1, δ2 and t is also
r, show that s = 6r.

Some generalizations of similar problems can be found in [1, 2].

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. Generalization

We generalize the problem. If γ1, γ2, · · · , γn are congruent circles such that γ1
and γ2 touch, and γi touches γi−1 at the farthest point on γi−1 from γ1 for i = 3,
4, · · · , n, then the circles are said to be congruent circles in line.
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Figure 2: n = 6, k = 4.

Theorem 1. For a rectangle ABCD with |BC| < AB| = s, let δ be the circle of
radius s and center A. Let γ1, γ2, · · · , γn be congruent circles in line of radius r
such that γ1 touches the segments BC and CD, γn touches the segment CD from
the same side as γ1 and δ externally. If there is a circle γ of radius r touching
the segments CD and DA and δ internally, the following statements hold.
(i) s = (2n+ 1 +

√
8n+ 1)r.

(ii) s/r is an integer if and only if there is a positive integer k such that

n =
k(k − 1)

2
.

In this event we have
s = k(k + 1)r,

and there are circles γ′
1, γ

′
2, · · · , γ′

k−1 such that the circles γ1, γ2, · · · , γn, γ′
1, γ

′
2,

· · · , γ′
k−1, γ form congruent circles in line.

Proof. Let E be the point of tangency of γ and DA (see Figure 2). From the two
right triangles, one of which is formed by A, E and the center of γn and the other
is formed by A, E and the center of γ, we have

(r + s)2 − (s− (2n− 1)r)2 = (s− r)2 − r2.

Solving the equation for s, we have s = (2n+1±
√
8n+ 1)r. Since s > 2(n+1)r >

(2n + 1 −
√
8n+ 1)r, (i) is proved. s/r is an integer if and only if there is a
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positive integer k such that 8n + 1 = (2k − 1)2. The last equation is equivalent
to n = k(k − 1)/2. Substituting this in (i), we have s = k(k + 1)r. The last part
of (ii) follows from s− 2nr − 2r = 2(k − 1)r. □

The case of Problem 1 can be obtained if n = 1, k = 2.
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