A configuration involving a square and two equilateral triangles

Li Ting Hon Stanford
M7, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
e-mail: tinghonli@yahoo.com.hk

Abstract

In this article, we investigate the geometric properties of a configuration which appeared in a sangaku problem from Yamagata hung in 1881 proposed by Gotoh[1].

Keywords. sangaku, equilateral triangle, square.
Mathematics Subject Classification (2010). 51M04.

1. Introduction

In this article, we investigate the geometric properties of the following configuration (see Figure 1). Assume that $A B C D$ is a square, E and F are the points on the sides $C D$ and $D A$, respectively, such that $\triangle B E F$ is an equilateral triangle, G is the midpoint of $B E, H$ is the point on intersection of the sides $E F$ and $D G$ and I is the point of intersection of the sides $A G$ and $B F$.
We solve the following problems proposed by Okumura [2], and also present two related results.

Problem 1.1. Prove or disprove that the circumcircle of $\triangle E H G$ touches the lines $B C, C D$ and $A G$ at G.

Problem 1.2. Prove or disprove that the circumcircle of $\triangle F I H$ is the reflection of the circumcircle of $\triangle G H I$ in the line $H I$.

[^0]

Figure 1. The geometric configuration which appeared in a sangaku problem proposed by Gotoh.

2. Solution to Problem 1.1

We first prove an important theorem.
Theorem 2.1. $\triangle A G D$ is an equilateral triangle.
Proof. Since $F G$ is perpendicular to $B E, \angle F G B+\angle B A F=90^{\circ}+90^{\circ}=180^{\circ}$. So $G F A B$ is concyclic. Then $\angle B A G=\angle B F G=\frac{60^{\circ}}{2}=30^{\circ}$. Hence $\angle G A D=$ $\angle B A D-\angle B A G=90^{\circ}-30^{\circ}=60^{\circ}$. Since G is the mid-point of $B E, \triangle A G D$ is an isosceles triangle with base $D A$. Therefore $\angle G D A=\angle G A D$. Therefore $\triangle A G D$ is equilateral.

We are now ready to solve problem 1.1 (see Figure 2).
Theorem 2.2. The circumcircle of $\triangle E H G$ has the following properties:
(1) It touches the line $A G$ at G.
(2) It touches the line $C D$ at E.
(3) It touches the line $B C$.

Proof. We first prove item (1). Since $\triangle A G D$ and $\triangle B E F$ are equilateral triangles, we have $\angle H E G=\angle H G A=60^{\circ}$. Hence $A G$ is a tangent of the circumcircle of $\triangle E H G$ at G.
We then prove item (2). $A B=A G . \angle A G B=\angle A B G=\frac{180^{\circ}-\angle B A G}{2}=\frac{180^{\circ}-30^{\circ}}{2}=$ $75^{\circ} . \angle E G H=180^{\circ}-\angle A G D-\angle A G B=180^{\circ}-60^{\circ}-75^{\circ}=45^{\circ}$. Since $G F D E$ is concyclic, $\angle E F D=\angle E G D=45^{\circ} . \angle H E D=\angle D E F=180^{\circ}-\angle E D F-$ $\angle E F D=180^{\circ}-90^{\circ}-45^{\circ}=45^{\circ}$. So $\angle E G H=\angle H E D=45^{\circ} . C D$ is the tangent of circumcircle of $\triangle E H G$ at E.

Figure 2. Theorem 2.2.
Lastly, we prove item (3). Assume that the line parallel to $C D$ passing through H meets $B C$ and $D A$ in points J and K, respectively. Let $B E=l . \angle E H J=$ $\angle F H K=180^{\circ}-\angle H K F-\angle E F D=180^{\circ}-90^{\circ}-45^{\circ}=45^{\circ} . \angle E H G=$ $180^{\circ}-\angle H E G-\angle E G H=180^{\circ}-60^{\circ}-45^{\circ}=75^{\circ}$. By sine law, $\frac{E G}{\sin \angle E H G}=\frac{E H}{\sin \angle E G H}$, $\frac{\frac{l}{2}}{\sin 75^{\circ}}=\frac{E H}{\sin 45^{\circ}}, E H=\frac{l \sin 45^{\circ}}{2 \sin 75^{\circ}} . C J=E H \sin \angle E H J=\frac{l \sin 45^{\circ}}{2 \sin 75^{\circ}} \sin 45^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}} l$.
Also, $C E=B E \sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}} l$. So we have $C E=C J$. Then $\angle C J E=45^{\circ}$. $\angle E J H=\angle C J H-\angle C J E=90^{\circ}-45^{\circ}=45^{\circ}$. Since $\angle E J H=\angle E G H=45^{\circ}$, we know that $E J G H$ are concyclic. Moreover, $\angle E H J=\angle E J C=45^{\circ}$, so the circumcircle of $E J G H$ touches $B C$ at J.

This solves Problem 1.1. By Theorem 2.2, we also have the following corollary.
Corollary 2.1. Suppose that $C D$ and $A G$ meet in a point M and $A M$ meets $B C$ in a point N, then the circumcircle of $\triangle E H G$ is the M-excircle of $\triangle C M N$.

3. Solution to Problem 1.2 and two Related results

We first prove an interesting lemma.
Lemma 3.1. Suppose ω_{1} and ω_{2} are two non-overlapping circles which intersect at points P and $Q . R$ and S are points on ω_{1} and ω_{2}, respectively. If $\angle P R Q=$ $\angle P S Q$, then ω_{2} is the reflection of ω_{1} in the line $P Q$.

Proof. Let r_{1} and r_{2} be the radius of ω_{1} and ω_{2}, respectively. By generalized law of sine, $r_{1}=\frac{P Q}{2 \sin \angle P R Q}=\frac{P Q}{2 \sin \angle P S Q}=r_{2} . \omega_{1}$ and ω_{2} have the same radii. Also. both circles pass through P and Q. Hence, ω_{2} is the reflection of ω_{1} in the line $P Q$.

Figure 3. Theorem 3.1.
Lemma 3.1 derives the following theorem, where the part (1) is the solution of Problem 1.2 (see Figure 3).

Theorem 3.1. The following statements are true.
(1) The circumcircle of $\triangle F I H$ is the reflection of the circumcircle of $\triangle G H I$ in the line HI.
(2) The circumcircle of $\triangle D H E$ is the reflection of the circumcircle of $\triangle D H F$ in the line $D H$.
(3) The circumcircle of $\triangle E F G$ is the reflection of the circumcircle of $\triangle A F G$ in the line $F G$.

References

[1] A. Hirayama, M. Matsuoka ed., The Sangaku in Yamagata, 1966.
[2] H. Okumura, Problems 2019-2, Sangaku J., Math., (2019), 24-25.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

