Sangaku Journal of Mathematics (SJM) ©SJM ISSN 2534-9562 Volume 7 (2023) pp. 1-8 Received 22 February 2023. Published on-line 25 February 2023 web: http://www.sangaku-journal.eu/ ©The Author(s) This article is published with open access¹.

A rare sangaku problem involving three congruent circles

HIROSHI ОКИМИRA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

Abstract. We consider a configuration of two externally touching circles with their external common tangents, and several congruent circles touching it.

Keywords. two externally touching circles

Mathematics Subject Classification (2010). 01A27, 51M04

1. INTRODUCTION

We consider two externally touching circles α and β of radii a and b (a < b), respectively with the external common tangents t and u meeting in a point V, which is denoted by \mathcal{J} . If b = na for a real number n, the configuration \mathcal{J} is explicitly denoted by $\mathcal{J}(n)$. For three figures f_1 , f_2 , f_3 , each of which is a line or a circle, $\Delta(f_1, f_2, f_3)$ denotes the curvilinear triangle surrounded by the three figures, and $I(f_1, f_2, f_3)$ is its incircle. Let γ_0 and γ_1 be circles congruent to $\gamma_2 = I(\alpha, \beta, t)$ lying inside of $\Delta(\alpha, t, u)$ and touching t such that γ_0 touches u and γ_1 touches α (see Figure 1). In this paper we consider the following problem for \mathcal{J} with the three congruent circles proposed by Kubodera (Λ (R\overline{a} E \overline{a}) in 1817, which is rare and can only be found in [5] and quoted in [4, p.45] (see Figure 2).

Figure 1: The configuration \mathcal{J} with the congruent circles γ_0 , γ_1 and γ_2 .

¹This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Problem 1. If γ_0 touches γ_1 , show $\mathcal{J} = \mathcal{J}(2)$.

Figure 2: Kubodera's problem.

2. Generalization

A solution of Problem 1 can be found in [3]. In this section we generalize the problem. We use the next proposition.

Proposition 1. If two externally touching circles C_1 and C_2 of radii r_1 and r_2 with an external common tangent s touch s at points P and Q, then (i) $|PQ| = 2\sqrt{r_1r_2}$.

(ii) If r_3 is the radius of $I(C_1, C_2, s)$, then we have $\frac{1}{\sqrt{r_3}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$.

Let A (resp. B, C) be the point of tangency of the circle α (resp. β , γ_0) and the line t for \mathcal{J} . Let v be the line joining V and the center of α . The following two triangles are similar (see Figure 3): (a) the triangle formed by the line v, the line parallel to t passing through the center of γ_0 , and the perpendicular to t at A, (b) the triangle formed by v, the line parallel to t passing through the center of α , and the perpendicular to t at B. Let c be the radius of γ_0 .

Figure 3: Similar triangles for Kubodera's problem.

The next theorem is a generalization of Problem 1.

Theorem 1. The circles γ_0 and γ_1 touch if and only if $\mathcal{J} = \mathcal{J}(2)$.

Proof. By Proposition 1(i), the circles γ_0 and γ_1 touch if and only if $|AC| = 2\sqrt{ac} + 2c$. Therefore by the similar triangles described in (a) and (b), γ_0 and γ_1 touch if and only if

(1)
$$\frac{2\sqrt{ac}+2c}{a-c} = \frac{2\sqrt{ab}}{b-a}.$$

While by Proposition 1(ii), we get

(2)
$$\frac{1}{\sqrt{c}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$

This implies

$$\frac{\sqrt{c}}{\sqrt{a} - \sqrt{c}} = \frac{\sqrt{b}}{\sqrt{a}}.$$

Hence we have

$$\frac{\sqrt{ac}+c}{a-c} - \frac{\sqrt{ab}}{b-a} = \frac{\sqrt{c}}{\sqrt{a}-\sqrt{c}} - \frac{\sqrt{ab}}{b-a} = \frac{\sqrt{b}}{\sqrt{a}} - \frac{\sqrt{ab}}{b-a} = \frac{\sqrt{b}(b-2a)}{\sqrt{a}(b-a)}.$$

Therefore (1) holds if and only if b = 2a.

In the event of the theorem, we have $c = 2(3 - 2\sqrt{2})a$ by (2).

3. Circles of radius $2(3+\sqrt{2})a$ for $\mathcal{J}(2)$

In this section we consider several circles of radius $2(3 + \sqrt{2})a$ for $\mathcal{J}(2)$. Let $\varepsilon_{-3} \neq \gamma_2$ be the circle touching α and β externally and t from the same side as α for \mathcal{J} . Let ε_{-1} and ε_0 be the circles congruent to ε_{-3} touching t from the same side as α such that ε_0 touches u from the same side as α , and $\varepsilon_{-1} \neq \varepsilon_{-3}$ touches α externally. Let e be the radius of the circle ε_0 .

Theorem 2. The circles ε_0 and ε_{-1} touch if and only if $\mathcal{J} = \mathcal{J}(2)$.

Proof. By the similar triangles made by v, the line parallel to t passing thorough the center of α and the perpendicular from the center of ε_0 to t and the triangle

described in (b), the circles ε_0 and ε_1 touch if and only if the following relation holds:

(3)
$$\frac{2\sqrt{ae} + 2e}{e - a} = \frac{2\sqrt{ab}}{b - a}$$

The rest of the proof is similar to that of Theorem 1, and is omitted.

In the event of the theorem, we get $e = 2(3 + 2\sqrt{2})a$. The circle ε_{-3} is an excircle of $\Delta(\alpha, \beta, t)$, while $\gamma_2 = I(\alpha, \beta, t)$. Therefore we may say that Theorem 2 is an excircle version of Theorem 1 (see Figure 4).

If $\mathcal{J} = \mathcal{J}(2)$, then the ratio of the sides of the two triangles in (a) and (b) equals $1 : 2\sqrt{2} : 3$. From now on we use a rectangular coordinate system with origin V so that the center of α has coordinates (3a, 0), and the line t has an equation $x + 2\sqrt{2}y = 0$ for $\mathcal{J}(2)$. We get the next theorem (see Figure 5).

Figure 5: ε_{-3} touches γ_{-2} at the highest point on γ_{-2} for $\mathcal{J}(2)$.

Theorem 3. The following statements hold for $\mathcal{J}(2)$.

(i) Let γ_{-2} be the circle touching the circle ε_{-3} externally at the lowest point on ε_{-3} and passing through the point V. Then γ_{-2} touches the line t at V and is congruent to the circle γ_0 .

(ii) Let ε_{-2} be the circle touching the circle γ_2 externally at the highest point on γ_2 and passing through the point V. Then ε_{-2} touches t at V and is congruent to the circle ε_0 .

Proof. If (p,q) are the coordinates of the center of the circle ε_{-3} , then we have $(p-3a)^2 + q^2 = (e+a)^2$ and $(p-6a)^2 + q^2 = (e+b)^2$, since ε_{-3} touches α and β externally. Eliminating b and e and solving the resulting equations for p and q, we get

(4)
$$(p,q) = \left(\frac{2\left(3-2\sqrt{2}\right)}{3}a, \frac{4\left(5+3\sqrt{2}\right)}{3}a\right) = \left(\frac{c}{3}, \frac{4\left(5+3\sqrt{2}\right)}{3}a\right).$$

Let r be the radius of γ_{-2} . The center of γ_{-2} has coordinates (p, q - e - r). Solving the equation $(0 - p)^2 + (0 - (q - e - r))^2 = r^2$ for r, we have $r = 2(3 - 2\sqrt{2})a = c$. Hence γ_{-2} is congruent to γ_0 and has center of coordinates (p, q - 12a). While $(q - 12a)/p = 2\sqrt{2}$. Therefore the line joining V and the

center of γ_{-2} is perpendicular to t, i.e., γ_{-2} touches t at V. This proves (i). The part (ii) is proved similarly, where the center of γ_2 has coordinates

(5)
$$(x_2, y_2) = \left(\frac{2\left(3+2\sqrt{2}\right)}{3}a, \frac{4\left(-5+3\sqrt{2}\right)}{3}a\right) = \left(\frac{e}{3}, \frac{4\left(-5+3\sqrt{2}\right)}{3}a\right).$$

Notice that the coordinates of the centers of ε_{-3} and γ_2 differ only in signs.

4. The configuration \mathcal{K}

Let τ be the homothety of center V such that $\gamma_0^{\tau} = \beta$ for $\mathcal{J}(2)$. The homothety ratio equals $b/c = 3+2\sqrt{2}$, which is denoted by ρ . For a circle C, C^{τ} is denoted by C^1 and C^{τ^k} is denoted by C^k for an integer k, where $C^0 = C$. Then $(C^k)^j = C^{k+j}$ holds for an integer j. Let $\gamma_{-3} = \varepsilon_{-3}^{-2}$, and $\gamma_{-1} = \varepsilon_{-1}^{-2}$. Then γ_{-3} and γ_{-1} are congruent to γ_0 . We now have the six congruent circles γ_k of radius c for k =-3, -2, -1, 0, 1, 2. We now define $\beta_k = \gamma_k^1$ and $\varepsilon_k = \gamma_k^2$. Then $\beta_0 = \beta$. Though we have already defined the congruent circles $\varepsilon_{-3}, \varepsilon_{-2}, \varepsilon_{-1}, \varepsilon_0$, our definition does not conflict with the former definitions. In this section we consider the following configuration \mathcal{K} (see Figure 6).

$$\mathcal{K} = (\bigcup_{i \in \{-3, -2, -1, 0, 1, 2\}, j \in \mathbb{Z}} \gamma_i^j) \cup (\bigcup_{k \in \mathbb{Z}} \alpha^k) \cup \{t, u\}.$$

Before considering \mathcal{K} , we show three more circles congruent to γ_0 using τ .

Theorem 4 ([2]). For two externally touching circles C_1 and C_2 of radii r_1 and r_2 with one of their externally common tangents s, let D_1 and D_2 be touching congruent circles of radius d lying inside of $\Delta(C_1, C_2, s)$ and touching s such that D_1 touches C_1 and D_2 touches C_2 . Then we have

$$d = \frac{w - \sqrt{w^2 - 4r_1r_2}}{2}, \quad where \quad w = r_1 + r_2 + 4\sqrt{r_1r_2}$$

If $r_1 = r_2 = r$ in the theorem, we have $d = (3 - 2\sqrt{2})r$. Let γ_3 and γ_4 be touching congruent circles lying inside of $\Delta(\beta_0, \beta_1, t)$ and touching t such that γ_3 touches β_0 and γ_4 touches β_1 . Then γ_3 and γ_4 have radius $2(3 - 2\sqrt{2})a = c$.

Let $\gamma_5 = I(\varepsilon_{-1}, \alpha^1, t)$ and assume that γ_5 has center of coordinates (p, q) and radius r. Then we have $(p - \rho^2 x_{-1})^2 + (q - \rho^2 y_{-1})^2 = (r + \rho^2 c)^2$, $(p - \rho^3 a)^2 + (q - 0)^2 = (r + \rho a)^2$, $(p + 2\sqrt{2}q)/3 = r$. Eliminating p and q from the three equations and solving the resulting equations for r, we get r = c or r = e. Since r < e, we have r = c.

We now consider the configuration \mathcal{K} . Let (x_k, y_k) be the coordinates of the center of the circle γ_k . By the proof of Theorem 3, the circle γ_{-2} has center of coordinates

(6)
$$(x_{-2}, y_{-2}) = \left(\frac{c}{3}, \frac{4\left(-4 + 3\sqrt{2}\right)}{3}a\right).$$

The circle γ_0 has center of coordinates $(x_0, y_0) = (3c, 0)$. Solving the equations $(y_1 - y_0)/(x_1 - x_0) = -1/2\sqrt{2}$ and $(x_1 - x_0)^2 + (y_1 - y_0)^2 = (c + c)^2$ for x_1 and

 y_1 , we get

(7)
$$(x_1, y_1) = \left(\left(\frac{22}{3} - 4\sqrt{2} \right) a, \left(-4 + \frac{8\sqrt{2}}{3} \right) a \right).$$

Since the center of γ_0 is the midpoint of the segment joining the centers of γ_{-1} and γ_1 , we get

(8)
$$(x_{-1}, y_{-1}) = \left(\left(\frac{86}{3} - 20\sqrt{2} \right) \right) a, \left(4 - \frac{8\sqrt{2}}{3} \right) a \right).$$

The circle γ_2 has center of coordinates given by (5).

Figure 6: The configuration \mathcal{K} .

We consider relationships between the circles in \mathcal{K} .

The circles γ_{-3} and γ_{-2} , and the circles γ_{-2} and γ_2 . Theorem 3 shows that γ_{-3}^{k+1} touches γ_{-2}^{k-1} externally at the highest point on γ_{-2}^{k-1} , and γ_{-2}^{k+1} touches γ_2^{k-1} externally at the highest point on γ_2^{k-1} for an integer k.

The circles γ_{-1} and γ_1 and t. Using (7) and solving the equations $(x - x_1)^2 + (y - y_1)^2 = c^2$ and $x + 2\sqrt{2}y = 0$ for x and y, we get the coordinates of the point of tangency of γ_1 and t, which are given by

(9)
$$\left(\frac{8(2-\sqrt{2})}{3}a,\frac{4(1-\sqrt{2})}{3}a\right).$$

Using (8) and solving the equations $(x - \rho x_{-1})^2 + (y - \rho y_{-1})^2 = (\rho c)^2$ and $x + 2\sqrt{2}y = 0$ for x and y, we get the coordinates of the point of tangency of β_{-1} and t, which are also given by (9). Therefore the circles β_{-1} , γ_1 and the line t touch at a point, i.e., the circles γ_{-1}^{k+1} , γ_1^k and the line t touch at a point for an integer k, where γ_{-1}^{k+1} , γ_1^k touch internally.

The circles γ_{-3} and γ_0 . The circles ε_{-3} and β_0 touch externally by the definition. Therefore the circles γ_{-3}^{k+1} and γ_0^k touch externally for an integer k. The circles γ_{-2} and γ_{-1} . By (6) and (8), $(x_{-2} - \rho x_{-1})^2 + (y_{-2} - \rho y_{-1})^2 = (c + \rho c)^2$ holds, i.e., γ_{-2} touches γ_{-1}^1 externally. Hence γ_{-2}^{k-1} and γ_{-1}^k touch externally for an integer k.

The circles γ_{-2} and γ_1 . Since the equation $(\rho x_{-2} - x_1)^2 + (\rho y_{-2} - y_1)^2 = (\rho c + c)^2$ holds by (6) and (7), the circles γ_{-2}^1 and γ_1 touch externally. Therefore the circles γ_{-2}^{k+1} and γ_1^k touch externally for an integer k.

The circle α . The circle α and γ_{-3}^2 touch externally by the definition. From $(\rho x_{-2} - 3a)^2 + (\rho y_{-2} - 0)^2 = (\rho c + a)^2$, the circles α and γ_{-2}^1 touch externally. The circles α and γ_{-1}^2 touch externally by the definition of ε_{-1} . Therefore α touches the circles γ_{-3}^2 , γ_{-2}^1 , γ_{-1}^2 , γ_{1} , γ_{2} externally.

5. The configuration $\mathcal{J}(4)$

In this section we give a slight generalization of an unexpected result for $\mathcal{J}(4)$, which can be found in [3] and quoted in [1] (see Figure 7).

Figure 7: (n, m) = (2, 6), (3, 9).

Let γ and γ' be congruent circles of radius c and centers C and C', respectively, touching t from the same side as α such that γ touches u from the same side as α and γ' touches α from the side opposite to β . Let $n = \sigma |CC'|/(2c) + 1$, where $\sigma = 1$, if $\overrightarrow{CC'}$ and \overrightarrow{VA} have the same direction, otherwise $\sigma = -1$. In this case we have $\sigma |CC'| = 2(n-1)c$ and say that there are n congruent circles of radius c on t lying inside of $\Delta(\alpha, t, u)$. If n is a positive integer, there actually exist circles $\gamma = \gamma_1, \gamma_2, \gamma_3, \dots, \gamma_n = \gamma'$ of radius c such that they touch t from the same side, and γ_1 and γ_2 touch, γ_{i+1} touches γ_i at the farthest point on γ_i from γ_{i-1} for $i = 2, 3, 4, \dots n - 1$. Similarly let δ and δ' be congruent circles of radius cand centers D and D', respectively, touching t from the same side as α such that δ touches α from the same side as β and δ' touches β from the same direction otherwise $\sigma = -1$. In this case we have $\sigma |DD'| = 2(m-1)c$ and say that there are m congruent circles of radius c on t lying inside of $\Delta(\alpha, \beta, t)$. **Theorem 5.** Assume b = 4a. There are n congruent circles of radius c on t lying inside of $\Delta(\alpha, t, u)$ if and only if there are 3n congruent circles of radius c on t lying inside of $\Delta(\alpha, \beta, t)$.

Proof. By the similar triangles described in (a) and (b) in section 2, there are n congruent circles of radius c on t lying inside of $\Delta(\alpha, t, u)$ if and only if

$$\frac{2\sqrt{ac} + 2(n-1)c}{a-c} = \frac{2\sqrt{ab}}{b-a}$$

Similarly there are m congruent circles of radius c on t lying inside of $\Delta(\alpha, \beta, t)$ if and only if

$$2\sqrt{ac} + 2(m-1)c + 2\sqrt{bc} = 2\sqrt{ab}.$$

Substituting b = 4a and c = ja in the two equations, and solving the resulting equations for n and m, we get

$$n = \frac{(\sqrt{j} - 1)(\sqrt{j} - 2)}{3j}, \quad m = \frac{(\sqrt{j} - 1)(\sqrt{j} - 2)}{j}.$$

Therefore we get m = 3n. The theorem is proved.

Notice that the theorem is true if n or m is not an integer (see Figure 8).

References

 H. Okumura, Wasan Geometry, In: Sriraman B. (eds) Handbook of the Mathematics of the Arts and Sciences. 2021 Springer, Cham.

https://doi.org/10.1007/978-3-319-70658-0_122-1

- [2] H. Okumura, Theorems on two congruent circles on a line, Sangaku J. Math., 1 (2017) 35–38.
- [3] H. Okumura, C. Sodeyama, A surprising property of successively touching circles, Mathematics Plus, 6 (1998) 17–18.
- [4] Saitama Prefectural Library (埼玉県立図書館) ed., The Sangaku in Saitama (埼玉の算額), Saitama Prefectural Library (埼玉県立図書館), 1969.
- [5] no author's name, Kururisha Sandaishū (久留里社算題集), no date, Tohoku University Digital Collection.