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1. Introduction

We consider two externally touching circles α and β of radii a and b (a < b),
respectively with the external common tangents t and u meeting in a point V ,
which is denoted by J . If b = na for a real number n, the configuration J
is explicitly denoted by J (n). For three figures f1, f2, f3, each of which is a
line or a circle, ∆(f1, f2, f3) denotes the curvilinear triangle surrounded by the
three figures, and I(f1, f2, f3) is its incircle. Let γ0 and γ1 be circles congruent to
γ2 = I(α, β, t) lying inside of ∆(α, t, u) and touching t such that γ0 touches u and
γ1 touches α (see Figure 1). In this paper we consider the following problem for
J with the three congruent circles proposed by Kubodera (久保寺正福) in 1817,
which is rare and can only be found in [5] and quoted in [4, p.45] (see Figure 2).
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Figure 1: The configuration J with the congruent circles γ0, γ1 and γ2.
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Problem 1. If γ0 touches γ1, show J = J (2).
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Figure 2: Kubodera’s problem.

2. Generalization

A solution of Problem 1 can be found in [3]. In this section we generalize the
problem. We use the next proposition.

Proposition 1. If two externally touching circles C1 and C2 of radii r1 and r2
with an external common tangent s touch s at points P and Q, then
(i) |PQ| = 2

√
r1r2.

(ii) If r3 is the radius of I(C1, C2, s), then we have
1

√
r3

=
1

√
r1

+
1

√
r2
.

Let A (resp. B, C) be the point of tangency of the circle α (resp. β, γ0) and the
line t for J . Let v be the line joining V and the center of α. The following two
triangles are similar (see Figure 3): (a) the triangle formed by the line v, the line
parallel to t passing through the center of γ0, and the perpendicular to t at A,
(b) the triangle formed by v, the line parallel to t passing through the center of
α, and the perpendicular to t at B. Let c be the radius of γ0.
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Figure 3: Similar triangles for Kubodera’s problem.

The next theorem is a generalization of Problem 1.

Theorem 1. The circles γ0 and γ1 touch if and only if J = J (2).

Proof. By Proposition 1(i), the circles γ0 and γ1 touch if and only if |AC| =
2
√
ac+ 2c. Therefore by the similar triangles described in (a) and (b), γ0 and γ1

touch if and only if

(1)
2
√
ac+ 2c

a− c
=

2
√
ab

b− a
.
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While by Proposition 1(ii), we get

(2)
1√
c
=

1√
a
+

1√
b
.

This implies
√
c√

a−
√
c
=

√
b√
a
.

Hence we have
√
ac+ c

a− c
−

√
ab

b− a
=

√
c√

a−
√
c
−

√
ab

b− a
=

√
b√
a
−

√
ab

b− a
=

√
b(b− 2a)√
a(b− a)

.

Therefore (1) holds if and only if b = 2a. □

In the event of the theorem, we have c = 2(3− 2
√
2)a by (2).

3. Circles of radius 2
(
3 +

√
2
)
a for J (2)

In this section we consider several circles of radius 2
(
3 +

√
2
)
a for J (2). Let

ε−3( ̸= γ2) be the circle touching α and β externally and t from the same side as
α for J . Let ε−1 and ε0 be the circles congruent to ε−3 touching t from the same
side as α such that ε0 touches u from the same side as α, and ε−1(̸= ε−3) touches
α externally. Let e be the radius of the circle ε0.
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V

Figure 4: The circles ε0, ε−1, ε−3 for J (2).

Theorem 2. The circles ε0 and ε−1 touch if and only if J = J (2).

Proof. By the similar triangles made by v, the line parallel to t passing thorough
the center of α and the perpendicular from the center of ε0 to t and the triangle
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described in (b), the circles ε0 and ε1 touch if and only if the following relation
holds:

(3)
2
√
ae+ 2e

e− a
=

2
√
ab

b− a
.

The rest of the proof is similar to that of Theorem 1, and is omitted. □

In the event of the theorem, we get e = 2(3+ 2
√
2)a. The circle ε−3 is an excircle

of ∆(α, β, t), while γ2 = I(α, β, t). Therefore we may say that Theorem 2 is an
excircle version of Theorem 1 (see Figure 4).

If J = J (2), then the ratio of the sides of the two triangles in (a) and (b) equals
1 : 2

√
2 : 3. From now on we use a rectangular coordinate system with origin

V so that the center of α has coordinates (3a, 0), and the line t has an equation
x+ 2

√
2y = 0 for J (2). We get the next theorem (see Figure 5).
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Figure 5: ε−3 touches γ−2 at the highest point on γ−2 for J (2).

Theorem 3. The following statements hold for J (2).
(i) Let γ−2 be the circle touching the circle ε−3 externally at the lowest point on
ε−3 and passing through the point V . Then γ−2 touches the line t at V and is
congruent to the circle γ0.
(ii) Let ε−2 be the circle touching the circle γ2 externally at the highest point on
γ2 and passing through the point V . Then ε−2 touches t at V and is congruent to
the circle ε0.

Proof. If (p, q) are the coordinates of the center of the circle ε−3, then we have
(p − 3a)2 + q2 = (e + a)2 and (p − 6a)2 + q2 = (e + b)2, since ε−3 touches α and
β externally. Eliminating b and e and solving the resulting equations for p and q,
we get

(4) (p, q) =

(
2
(
3− 2

√
2
)

3
a,

4
(
5 + 3

√
2
)

3
a

)
=

(
c

3
,
4
(
5 + 3

√
2
)

3
a

)
.

Let r be the radius of γ−2. The center of γ−2 has coordinates (p, q − e − r).
Solving the equation (0 − p)2 + (0 − (q − e − r))2 = r2 for r, we have r =
2
(
3− 2

√
2
)
a = c. Hence γ−2 is congruent to γ0 and has center of coordinates

(p, q − 12a). While (q − 12a)/p = 2
√
2. Therefore the line joining V and the
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center of γ−2 is perpendicular to t, i.e., γ−2 touches t at V . This proves (i). The
part (ii) is proved similarly, where the center of γ2 has coordinates

(5) (x2, y2) =

(
2
(
3 + 2

√
2
)

3
a,

4
(
−5 + 3

√
2
)

3
a

)
=

(
e

3
,
4
(
−5 + 3

√
2
)

3
a

)
.

□

Notice that the coordinates of the centers of ε−3 and γ2 differ only in signs.

4. The configuration K

Let τ be the homothety of center V such that γτ
0 = β for J (2). The homothety

ratio equals b/c = 3+2
√
2, which is denoted by ρ. For a circle C, Cτ is denoted by

C1 and Cτk is denoted by Ck for an integer k, where C0 = C. Then (Ck)j = Ck+j

holds for an integer j. Let γ−3 = ε−2
−3, and γ−1 = ε−2

−1. Then γ−3 and γ−1 are
congruent to γ0. We now have the six congruent circles γk of radius c for k =
−3,−2,−1, 0, 1, 2. We now define βk = γ1

k and εk = γ2
k. Then β0 = β. Though

we have already defined the congruent circles ε−3, ε−2, ε−1, ε0, our definition does
not conflict with the former definitions. In this section we consider the following
configuration K (see Figure 6).

K = (∪i∈{−3,−2,−1,0,1,2},j∈Zγ
j
i ) ∪ (∪k∈Zα

k) ∪ {t, u}.

Before considering K, we show three more circles congruent to γ0 using τ .

Theorem 4 ([2]). For two externally touching circles C1 and C2 of radii r1 and
r2 with one of their externally common tangents s, let D1 and D2 be touching
congruent circles of radius d lying inside of ∆(C1, C2, s) and touching s such that
D1 touches C1 and D2 touches C2. Then we have

d =
w −

√
w2 − 4r1r2
2

, where w = r1 + r2 + 4
√
r1r2.

If r1 = r2 = r in the theorem, we have d = (3− 2
√
2)r. Let γ3 and γ4 be touching

congruent circles lying inside of ∆(β0, β1, t) and touching t such that γ3 touches
β0 and γ4 touches β1. Then γ3 and γ4 have radius 2

(
3− 2

√
2
)
a = c.

Let γ5 = I(ε−1, α
1, t) and assume that γ5 has center of coordinates (p, q) and radius

r. Then we have (p− ρ2x−1)
2 + (q− ρ2y−1)

2 = (r+ ρ2c)2, (p− ρ3a)2 + (q− 0)2 =
(r + ρa)2, (p + 2

√
2q)/3 = r. Eliminating p and q from the three equations and

solving the resulting equations for r, we get r = c or r = e. Since r < e, we have
r = c.

We now consider the configuration K. Let (xk, yk) be the coordinates of the center
of the circle γk. By the proof of Theorem 3, the circle γ−2 has center of coordinates

(6) (x−2, y−2) =

(
c

3
,
4
(
−4 + 3

√
2
)

3
a

)
.

The circle γ0 has center of coordinates (x0, y0) = (3c, 0). Solving the equations
(y1 − y0)/(x1 − x0) = −1/2

√
2 and (x1 − x0)

2 + (y1 − y0)
2 = (c + c)2 for x1 and
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y1, we get

(7) (x1, y1) =

((
22

3
− 4

√
2

)
a,

(
−4 +

8
√
2

3

)
a

)
.

Since the center of γ0 is the midpoint of the segment joining the centers of γ−1

and γ1, we get

(8) (x−1, y−1) =

((
86

3
− 20

√
2)

)
a,

(
4− 8

√
2

3

)
a

)
.

The circle γ2 has center of coordinates given by (5).
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Figure 6: The configuration K.

We consider relationships between the circles in K.

The circles γ−3 and γ−2, and the circles γ−2 and γ2. Theorem 3 shows that
γk+1
−3 touches γk−1

−2 externally at the highest point on γk−1
−2 , and γk+1

−2 touches γk−1
2

externally at the highest point on γk−1
2 for an integer k.

The circles γ−1 and γ1 and t. Using (7) and solving the equations (x− x1)
2 +

(y − y1)
2 = c2 and x+ 2

√
2y = 0 for x and y, we get the coordinates of the point

of tangency of γ1 and t, which are given by

(9)

(
8(2−

√
2)

3
a,

4
(
1−

√
2
)

3
a

)
.

Using (8) and solving the equations (x − ρx−1)
2 + (y − ρy−1)

2 = (ρc)2 and x +
2
√
2y = 0 for x and y, we get the coordinates of the point of tangency of β−1 and

t, which are also given by (9). Therefore the circles β−1, γ1 and the line t touch
at a point, i.e., the circles γk+1

−1 , γk
1 and the line t touch at a point for an integer

k, where γk+1
−1 , γk

1 touch internally.

The circles γ−3 and γ0. The circles ε−3 and β0 touch externally by the definition.
Therefore the circles γk+1

−3 and γk
0 touch externally for an integer k.
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The circles γ−2 and γ−1. By (6) and (8), (x−2−ρx−1)
2+(y−2−ρy−1)

2 = (c+ρc)2

holds, i.e., γ−2 touches γ1
−1 externally. Hence γk−1

−2 and γk
−1 touch externally for

an integer k.

The circles γ−2 and γ1. Since the equation (ρx−2−x1)
2+(ρy−2−y1)

2 = (ρc+c)2

holds by (6) and (7), the circles γ1
−2 and γ1 touch externally. Therefore the circles

γk+1
−2 and γk

1 touch externally for an integer k.

The circle α. The circle α and γ2
−3 touch externally by the definition. From

(ρx−2−3a)2+(ρy−2−0)2 = (ρc+a)2, the circles α and γ1
−2 touch externally. The

circles α and γ2
−1 touch externally by the definition of ε−1. Therefore α touches

the circles γ2
−3, γ

1
−2, γ

2
−1, γ1, γ2 externally.

5. The configuration J (4)

In this section we give a slight generalization of an unexpected result for J (4),
which can be found in [3] and quoted in [1] (see Figure 7).

V

t u

α

β

A

Figure 7: (n,m) = (2, 6), (3, 9).

Let γ and γ′ be congruent circles of radius c and centers C and C ′, respectively,
touching t from the same side as α such that γ touches u from the same side as
α and γ′ touches α from the side opposite to β. Let n = σ|CC ′|/(2c) + 1, where

σ = 1, if
−−→
CC ′ and

−→
V A have the same direction, otherwise σ = −1. In this case

we have σ|CC ′| = 2(n − 1)c and say that there are n congruent circles of radius
c on t lying inside of ∆(α, t, u). If n is a positive integer, there actually exist
circles γ = γ1, γ2, γ3, · · · , γn = γ′ of radius c such that they touch t from the
same side, and γ1 and γ2 touch, γi+1 touches γi at the farthest point on γi from
γi−1 for i = 2, 3, 4, · · ·n− 1. Similarly let δ and δ′ be congruent circles of radius c
and centers D and D′, respectively, touching t from the same side as α such that
δ touches α from the same side as β and δ′ touches β from the same side as α.

Let m = σ|DD′|/(2c) + 1, where σ = 1 if
−−→
DD′ and

−→
V A have the same direction

otherwise σ = −1. In this case we have σ|DD′| = 2(m − 1)c and say that there
are m congruent circles of radius c on t lying inside of ∆(α, β, t).



8 A rare sangaku problem involving three congruent circles

Theorem 5. Assume b = 4a. There are n congruent circles of radius c on t lying
inside of ∆(α, t, u) if and only if there are 3n congruent circles of radius c on t
lying inside of ∆(α, β, t).

Proof. By the similar triangles described in (a) and (b) in section 2, there are n
congruent circles of radius c on t lying inside of ∆(α, t, u) if and only if

2
√
ac+ 2(n− 1)c

a− c
=

2
√
ab

b− a
.

Similarly there are m congruent circles of radius c on t lying inside of ∆(α, β, t)
if and only if

2
√
ac+ 2(m− 1)c+ 2

√
bc = 2

√
ab.

Substituting b = 4a and c = ja in the two equations, and solving the resulting
equations for n and m, we get

n =
(
√
j − 1)(

√
j − 2)

3j
, m =

(
√
j − 1)(

√
j − 2)

j
.

Therefore we get m = 3n. The theorem is proved. □

Notice that the theorem is true if n or m is not an integer (see Figure 8).

AV
t

βα
u

B

C ′ C

Figure 8: (n,m) = (1
3
, 1).
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