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using division by zero 1/0 = 0.
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1. Introduction

For a point C on the segment AB, let α, β and γ be the semicircles of diameters
BC, CA and AB, respectively constructed on the same side of AB. The area
surrounded by the three semicircles is called the arbelos and the radical axis of α
and β divides it into two curvilinear triangles with congruent incircles called the
twin circles of Archimedes (see Figure 1). In this note we consider two pairs of
semicircles of diameters CBi and CAi (i = 1, 2) instead of the semicircles α and
β such that the semicircles of diameter AiBi and γ are concentric (see Figure 2),
and show the existence of several pairs of twin circles, i.e., two congruent circles.
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1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
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If A1 = A2, then the configuration consists of three semicircles, which is called
an arbelos with overhang ([1], [3]).

2. Results

For points P and Q on the line AB, we denote the semicircle of diameter PQ
constructed on the same side of AB as γ by (PQ). Let |CB| = 2a and |CA| = 2b.
We use a rectangular coordinate system with origin C such that B has coordinates
(2a, 0) and the farthest point on γ from AB has coordinates (a− b, a+ b).

If a circle or a semicircle touches one of given two circles internally and the
other externally, we say that it touches the two circles in the opposite sense,
otherwise in the same sense. Let each of α1, β1, α2 and β2 be a circle or a
semicircle. If αi touches βi externally for i = 1, 2 or αi touches βi internally for
i = 1, 2, then we say that α1 touches β1 and α2 touches β2 in the same sense,
otherwise in the opposite sense.
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Figure 3: (1, 1; 1,−1; 1).
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Figure 4: (1, 1; 1,−1;−1).

Theorem 1. For three concentric semicircles γ = (AB), (A1B1) and (A2B2), let
αi = (CBi) and βi = (CAi). If there are two circles δa and δb such that they do
not touch and γ touches δa and δb in the same sense, and δa touches αi and δb
touches βi in the same sense for i = 1, 2, then δa and δb are congruent.

Proof. Let the semicircle αi (resp. βi) have radius ai (resp. bi) and center of

coordinates (σiai, 0) (resp. (−σibi, 0)), where σi = 1 if
−→
AB and

−−→
AiBi have the

same direction, otherwise σi = −1 for i = 1, 2. We assume that the two circles δa
and δb exist, and let ra > 0 and (xa, ya) be the radius and the coordinates of the
center of δa. Similarly rb > 0 and (xb, yb) are defined. Considering the distances
from the center of δa to the centers of αi and γ for i = 1, 2, we have

(1) (xa − σiai)
2 + y2a = (ςira + ai)

2, (xa − (a− b))2 + y2a = (τra + a+ b)2,

where ςi = 1 if δa touches αi externally, otherwise −1, and τ = 1 if δa touches γ
externally, otherwise −1. Similarly for i = 1, 2, we have

(2) (xb + σibi)
2 + y2b = (ςirb + bi)

2, (xb − (a− b))2 + y2b = (τrb + a+ b)2.

Firstly we consider the sixteen cases (σ1, σ2; ς1, ς2; τ) = (1,±1;±1,±1;±1).

(i) Assume (σ1, σ2; ς1, ς2; τ) = (1, 1; 1, 1; 1). Eliminating xa and ya from (1),
and solving the resulting equation for ra, we have ra = −a < 0. Therefore the
circle δa does not exist.

(ii) Assume (σ1, σ2; ς1, ς2; τ) = (1, 1; 1, 1;−1). Then we have ra = b from (1)
and rb = a from (2). Hence δa and δb have diameters CA and CB, respectively,
i.e., they touch, a contradiction. Therefore the circles δa and δb do not exist.
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(iii) Assume (σ1, σ2; ς1, ς2; τ) = (1, 1; 1,−1; 1) (see Figure 3). Eliminating xa

and ya from (1), and solving the resulting equation for ra, we have

(3) ra =
ab(a1 − a2)

aa2 − a1(a2 + b)
.

Similarly from (2), we have

rb =
ab(b1 − b2)

bb2 − b1(b2 + a)
.

Since σ1 = σ2 = 1, we have ai− bi = a− b for i = 1, 2. Substituting a1 = a− b+ b1
and a2 = a− b+ b2 in (3), we get

ra =
ab(a1 − a2)

aa2 − a1(a2 + b)
=

ab(b1 − b2)

bb2 − b1(b2 + a)
= rb.

(iv) Assume (σ1, σ2; ς1, ς2; τ) = (1, 1; 1,−1;−1) (see Figure 4). In a similar
way as in (iii), we get

ra =
ab(a1 − a2)

aa1 − a2(a1 + b)
=

ab(b1 − b2)

bb1 − b2(b1 + a)
= rb.

(v) Assume (σ1, σ2; ς1, ς2; τ) = (1, 1;−1, 1; 1). The result is obtained from (iii)
by exchanging the suffixes 1 and 2 (see Figure 3), i.e.,

ra =
ab(a2 − a1)

aa1 − a2(a1 + b)
=

ab(b2 − b1)

bb1 − b2(b1 + a)
= rb.

(vi) Assume (σ1, σ2; ς1, ς2; τ) = (1, 1;−1, 1;−1). The result is obtained from
(iv) by exchanging the suffixes 1 and 2, i.e.,

ra =
ab(a2 − a1)

aa2 − a1(a2 + b)
=

ab(b2 − b1)

bb2 − b1(b2 + a)
= rb.

(vii) If (σ1, σ2; ς1, ς2; τ) = (1, 1;−1,−1; 1), then we have ra = −b. Therefore
the circle δa does not exist.

(viii) If (σ1, σ2; ς1, ς2, τ) = (1, 1;−1,−1;−1), then the circles δa and δb do not
exist similar as to the case (ii).

(ix) Assume (σ1, σ2; ς1, ς2; τ) = (1,−1; 1, 1; 1) (see Figure 5). Then we have

ra =
−ab(a1 + a2)

aa2 − a1(a2 − b)
=

−ab(b1 + b2)

ab1 − b2(b1 − b)
= rb.

(x) Assume (σ1, σ2; ς1, ς2; τ) = (1,−1; 1, 1;−1) (see Figure 6). Then we have

ra =
ab(a1 + a2)

aa1 + a2(a1 + b)
=

ab(b1 + b2)

bb1 + b2(b1 + a)
= rb.

(xi) If (σ1, σ2; ς1, ς2; τ) = (1,−1; 1,−1; 1), then we have ra = −a. Therefore
the circle δa does not exist.

(xii) If (σ1, σ2; ς1, ς2; τ) = (1,−1; 1,−1;−1), then we have ra = b and rb = a.
Hence the circles δa and δb do not exist similar as to the case (ii).

(xiii) If (σ1, σ2; ς1, ς2; τ) = (1,−1;−1, 1; 1), then we have ra = −b. Therefore
the circle δa does not exist.
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(xiv) If (σ1, σ2; ς1, ς2; τ) = (1,−1;−1, 1;−1), then we have ra = a and rb = b.
Therefore the circles δa and δb do not exist similar as to the case (ii).

(xv) If (σ1, σ2; ς1, ς2; τ) = (1,−1;−1,−1; 1), then by (1) we have

ra = − ab(a1 + a2)

aa1 + a2(a1 + b)
< 0.

Hence the circle δa does not exist.

(xvi) Assume (σ1, σ2; ς1, ς2; τ) = (1,−1;−1,−1;−1) (see Figure 7). Then we
have

ra =
ab(a1 + a2)

aa2 − a1(a2 − b)
=

ab(b1 + b2)

ab1 − b2(b1 − b)
= rb.

From the above results, we can get the two congruent circles δa and δb in
the seven cases (σ1, σ2; ς1, ς2; τ) = (1, 1; 1,−1; 1), (1, 1; 1,−1;−1), (1, 1;−1, 1; 1),
(1, 1;−1, 1;−1), (1,−1; 1, 1; 1), (1,−1; 1, 1;−1), (1,−1;−1,−1;−1).

There are still more sixteen cases (σ1, σ2; ς1, ς2; τ) = (−1,±1;±1,±1;±1)
to be considered. However the radii of δa and δb in the eight cases
(σ1, σ2; ς1, ς2; τ) = (−1, 1;±1,±1;±1) are obtained from the already con-
sidered cases (σ1, σ2; ς1, ς2; τ) = (1,−1;±1,±1;±1) by exchanging the suf-
fixes 1 and 2. Also the radii of δa and δb in the remaining cases
(σ1, σ2; ς1, ς2; τ) = (−1,−1;±1,±1;±1) are obtained from the already considered
cases (σ1, σ2; ς1, ς2; τ) = (1, 1;±1,±1;±1) by exchanging a1 and b1 and exchanging
a2 and b2. Therefore we can get the two congruent circles δa and δb in the four-
teen cases (σ1, σ2; ς1, ς2; τ) = (±1, 1; 1,−1; 1), (±1, 1; 1,−1;−1), (±1, 1;−1, 1; 1),
(±1, 1;−1, 1;−1), (±1,−1; 1, 1; 1), (±1,−1; 1, 1;−1), (±1,−1;−1,−1;−1). □
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Figure 5: (1,−1; 1, 1; 1).
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Figure 6: (1,−1; 1, 1;−1).
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Figure 7: (1,−1;−1,−1;−1).
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Figure 8: ra = rb = 0.

If (σ1, σ2) = (1,−1), then we have aa2 − a1(a2 − b) = ab1 − b2(b1 − b) by
a1 = a− b+ b1 and a2 = b− a+ b2. Moreover if

(4) aa2 − a1(a2 − b) = ab1 − b2(b1 − b) = 0

in the cases (ix) and (xvi), then we have ra = rb = 0 by division by zero 1/0 = 0
([4]). Notice that a line has radius 0 as a circle ([2], [4]). Solving (4) for a and b,
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we have

(a, b) =

(
a1b2(b1 − a2)

a1b1 − a2b2
,
a2b1(a1 − b2)

a1b1 − a2b2

)
,

which enable us to get the semicircle γ from the semicircles α1, β1, α2 and β2 so
that δa and δb are lines. Indeed in this case, the semicircles α1, α2 and γ have an
external common tangent, and the semicircles β1, β2 and γ also have an external
common tangent (see Figure 8).

Division by zero was founded by a professor emeritus at Gunma University
Saburou Saitoh. For an extensive reference of this entirely new concept, see [4].
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