Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 7 (2023) pp. 32-34
Received 10 May 2023. Published on-line 17 May 2023
web: http://www.sangaku-journal.eu/
(c)The Author(s) This article is published with open access ${ }^{11}$.

A configuration arising from Problem 2023-1-1

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract

We generalize Problem 2023-1-1 and consider a configuration of a rectangle and two pairs of congruent circles arising from the problem.

Keywords. congruent circles on a side
Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction

We consider the following problem proposed in [1] and cited in [2] (see Figure (1).
Problem 1 ([1). For a rectangle $A B C D$, assume that α is the incircle of the triangle $A B C, \beta$ is a circle in the triangle $A C D$ and touching α and the side $A C$ at their point of tangency and touching the side $C D, \gamma$ is the circle touching β externally and the sides $B C$ and $C D$ from the inside of $A B C D$. If the circles β and γ are congruent, then show that the radius of α equals $|D A| / 3$.

Figure 1.
In this paper we solve the problem in a general way, and consider a configuration of a rectangle and two pairs of congruent circles arising from the problem.

[^0]
2. Generalization and a configuration \mathcal{K}_{n}

We consider the configuration consisting of the rectangle $A B C D$ and the circles α and β, which is denoted by \mathcal{K}. Let a and b be the radii of α and β, respectively, and let $p=|A B|$ and $q=|D A|$. Since α is the incircle of the right triangle $A B C$, we have

$$
\begin{equation*}
a=\frac{1}{2}\left(p+q-\sqrt{p^{2}+q^{2}}\right) . \tag{1}
\end{equation*}
$$

Lemma 1. The following relation holds for \mathcal{K} :

$$
\begin{equation*}
b=\frac{2 p^{2}-p q+q^{2}+(q-2 p) \sqrt{p^{2}+q^{2}}}{2 q} . \tag{2}
\end{equation*}
$$

Proof. Let $\theta=\angle A C D / 2$ (see Figure 21). Then $p=a+a \cot \theta$ and $q=a+b+$ $(a+b) \cos 2 \theta$ hold. Eliminating θ from the two equations and substituting (1) in the resulting equation, and solving the resulting equation for b, we get (2).

Figure 2: The configuration \mathcal{K}.

Figure 3: \mathcal{K}_{2}.

For an integer $n \geq 2$, assume that there are n congruent circles $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ in the rectangle $A B C D$ and touching the side $A B$ such that α_{1} touches the side $B C$, α_{2} touches α_{1}, and $\alpha_{i}\left(\neq \alpha_{i-2}\right)$ touches α_{i-1} for $i=3,4, \cdots, n$, and α_{n} touches the side $D A$. Then the circles are called n congruent circles on the side $A B$. Moreover if $\alpha=\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are n congruent circles on the side $A B$ for the configuration \mathcal{K}, then \mathcal{K} with the n congruent circles is denoted by \mathcal{K}_{n} (see Figures 4 and 5, where the small red circles will be explained soon later). We will see that the figure in Problem 1 is a part of \mathcal{K}_{2} (see Figure 3). The next theorem gives a generalized solution of Problem 1.

Theorem 1. Let $m=(n-1)(2 n-1)$ for an integer $n \geq 2$. The following statements are true.
(i) $n<m$.
(ii) For the configuration $\mathcal{K}_{n}(n \geq 2)$, there are m congruent circles $\beta_{1}, \beta_{2}, \cdots$, $\beta_{n}, \cdots, \beta_{m}$ on the side $C D$ such that β_{1} touches the sides $B C$ and $\beta_{n}=\beta$.
(iii) The following relations hold for \mathcal{K}_{n} :

$$
\frac{p}{q}=\frac{2 n(n-1)}{2 n-1}, \quad a=\frac{n-1}{2 n-1} q, \quad b=\frac{n}{(2 n-1)^{2}} q .
$$

Proof. The part (i) follows from $m-n=(n-1)(2 n-1)-n=2(n-1)^{2}-1 \geq$ $2-1>0$. We prove (ii). Let $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be the rectangle such that $A^{\prime}=C, B^{\prime}$ and
C^{\prime} lie on the sides $C D$ and $C A$ ，respectively，and β is the incircle of the triangle $A^{\prime} B^{\prime} C^{\prime}$（see Figure（2）．Then $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are similar．Hence there are n congruent circles $\beta_{1}, \beta_{2}, \cdots, \beta_{n}=\beta$ on the side $A^{\prime} B^{\prime}$ ．Let m^{\prime} be the positive real number such that $2 m^{\prime} b=p$ ，while we obviously have $2 n a=p$ ．We substitute （11）and（2）in the the last two equations and eliminate p ，and solve the resulting equation for m^{\prime} ．Then we get $m^{\prime}=(n-1)(2 n-1)$ ．This proves（ii）．Substituting （1）in $p=2 n a$ and solving the resulting equation for p / q ，we get the first equation of（iii）．Substituting $p=2 n a$ in the first equation，we get the second equation． The third equation follows from the second equation and $b=n a / m$ ．

Figure 4： $\mathcal{K}_{n}(n=3)$ ．

Figure 5： $\mathcal{K}_{n}(n=5)$ ．
The first equation of（iii）shows that the triangle $A B C$ in \mathcal{K}_{n} is a $(2 n-1)-2 n(n-1)-$ $(2(n-1) n+1)$ triangle．Therefore $A B C$ in Problem 1 is a 3－4－5 triangle．

References

［1］Kubodera（久保寺正福）ed．，Kanji Sampō（勧事算法），1821，Tohoku University Digital Collection．
［2］H．Okumura，Problems 2023－1，Sangaku J．Math．， 7 （2023）9－12．
［3］H．Okumura，Wasan Geometry．In：Sriraman B．（eds）Handbook of the Mathematics of the Arts and Sciences．Springer，Cham（2021）711－762．https：／／doi．org／10．1007／ 978－3－319－70658－0＿122－1

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

