On a Sangaku like configuration involving a triangle and three congruent circles

Paris Pamfilos
Estias 4, 71307 Heraklion, Greece
e-mail: pamfilos@uoc.gr

Abstract

We present some geometric conditions for the existence of solutions of a sangaku like configuration involving three equal circles, each touching two sides of a triangle. In a limit case naturally appearing in this study, the configuration reduces to the well-known Sangaku from the Chiba prefecture.

Keywords. triangle geometry, Sangaku.
Mathematics Subject Classification (2020). 51-02, 51M15.

1. Introduction

The present discussion was triggered from a question addressed to me about a Sangaku-like problem. ${ }^{2}$ It was about the configuration of Figure 1.

Figure 1. A Sangaku-like problem
In this the triangle $A^{\prime} B^{\prime} C^{\prime}$ is inscribed in the triangle $A B C$ and is simultaneously externally tangent to three equal circles κ_{A}, κ_{B} and κ_{C} of radius r, each in turn

[^0]tangent to two sides of $A B C$ and each tangent to a different side of $A^{\prime} B^{\prime} C^{\prime}$. It was to prove that $r+r^{\prime}=\rho$, where ρ is the inradius of $A B C$.
In fact, it is not difficult to show that the inscribed triangle $A^{\prime} B^{\prime} C^{\prime}$ has the same area and perimeter with the one formed by the centers of the three equal circles (see Figure 2), from which the result follows immediately.

Figure 2. Two triangles with equal areas and perimeters
I refer to this, which could be well known, as "the problem". For the completeness of exposition I supply a proof in the next section. My interest however focused on two other questions: (i) How big can be the radius r and have still a triangle $A^{\prime} B^{\prime} C^{\prime}$ as in this configuration? (ii) How many such triangles $A^{\prime} B^{\prime} C^{\prime}$ exist for a given r that allows such an existence? The investigation of some limits for the existence of solutions to this problem led in a natural way to the well-known Sangaku from the Chiba prefecture.
Regarding the organization of the article, in section 2 we supply a short proof of the problem. In section 3 we determine the "admissible configurations" i.e. those for which we can find a solution to the problem. In section 4 we study an ellipse intimately connected with the existence of solutions. In section 5 we draw some further restrictions on the existence of solutions in connection with the aforementioned ellipse. In section 6 we study the width of a certain strip containing this ellipse. Finally, in section 7 we discuss some bounds for the existence of solutions and a resulting limit configuration coinciding with that of the Sangaku from the Chiba prefecture.

2. Solution of the initial problem

Comparing the tangents from the points B^{\prime}, C^{\prime} and A^{\prime} we see that the perimeters of the two triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A_{0} B_{0} C_{0}$ are equal (see Figure 3).
For the computation of areas, we notice first that the three quadrangles at the vertices of $A B C: A A_{1} A_{0} A_{3}, B B_{1} B_{0} B_{3}$ and $C C_{1} C_{0} C_{3}$, glued together, create a triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ similar to $A B C$ (see Figure (4) with an incircle or radius r. Hence the similarity ratio is r / ρ. Denoting the semi-perimeters of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}, A_{0} B_{0} C_{0}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ correspondingly by $\tau, \tau^{\prime}, \tau_{0}$ and $\tau^{\prime \prime}$ and the corresponding areas $E=(A B C)$ and $E^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}\right), \ldots$, we have, using the formulas $E=\rho \tau, E^{\prime}=r^{\prime} \tau^{\prime}, \ldots$:

$$
E^{\prime}=E-\left(A C^{\prime} B^{\prime}\right)-\left(B A^{\prime} C^{\prime}\right)-\left(C B^{\prime} A^{\prime}\right)=\rho \cdot \tau-r \cdot\left(\tau+\tau^{\prime}\right) .
$$

Figure 3. Two triangles with equal perimeters
But we saw that $\tau^{\prime}=\tau_{0}$ and $A_{0} B_{0} C_{0}$ is similar to $A B C$ in ratio $\frac{\rho-r}{\rho}$. Hence the semi-perimeter τ^{\prime} of $A^{\prime} B^{\prime} C^{\prime}$ is

$$
\tau^{\prime}=\frac{(\rho-r)}{\rho} \tau
$$

On the other hand, the area $E_{0}=\left(A_{0} B_{0} C_{0}\right)$ results by subtracting from the area $E=(A B C)$ the areas of the three rectangles and the area $E^{\prime \prime}=\left(A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}\right)$:

$$
E_{0}=E-2 r \tau_{0}-\frac{r^{2}}{\rho^{2}} E=\rho \tau-2 r \frac{\rho-r}{\rho} \tau-\frac{r^{2}}{\rho^{2}} \rho \tau=\tau \frac{(\rho-r)^{2}}{\rho} .
$$

The claim $\rho=r+r^{\prime}$ results obviously from $r^{\prime}=E^{\prime} / \tau^{\prime}=E_{0} / \tau_{0}=\rho-r$.

Figure 4. Two triangles with equal areas

3. The admissible configuration

Let us assume that the circles κ_{B} and κ_{C}, tangent to the side $B C$, are sufficiently small. Let also ζ_{B} and ζ_{C} be the tangents respectively from A to κ_{B} and κ_{C} different from the sides $A B$ and $A C$. Let finally Y_{1} and Y_{2} be their intersection with $B C$ (see Figure [5•(I)).
We see easily, that if there is a chance to find a solution to the problem, the vertex A^{\prime} of the inscribed triangle $A^{\prime} B^{\prime} C^{\prime}$ has to be in the interval $\left[Y_{1}, Y_{2}\right]$. The width of this interval decreases as the equal circles κ_{B} and κ_{C} become bigger and bigger, until their radius reaches a critical value, for which the two tangents ζ_{B} and ζ_{C} coincide with a common tangent ζ_{0} to the two circles from A. The circles defined for this critical value and their common tangent ζ_{0} through A define the so-called "Sangaku from the Chiba prefecture" ([3] , [4]) (see Figure 5(II)).

For this limit configuration there is obviously no solution to our problem. Hence the radius r of the circles has to be less than this critical radius of the corresponding Sangaku circles associated to the side $B C$ of the triangle. Since the same reasoning is valid for any side of the triangle we conclude, that the radius r of the

Figure 5. Acceptable domain of location of A^{\prime}
three circles has to be less than the radius of the Sangaku circles corresponding to the smallest side of the triangle $A B C$. We call a configuration "admissible" if it satisfies this restriction. Subsequently we'll deal with admissible configurations and we'll determine also the critical value of r related to the Sangaku from Chiba.

4. An elliptic envelope

The following procedure seems to be a natural way to search for an inscribed triangle touching the three circles (see Figure 6f(I)): Select a side, $B C$ say, and move a point Y on it, drawing the tangents $Y X$ and $Y Z$ to the two circles

Figure 6. Positions of $X Z$ for varying $Y \in B C$
tangent to it and intersecting the other sides at X and Z. As Y moves on $B C$ it may happen that the segment $X Z$ becomes tangent to the third circle (see Figure 6 (II)). In fact, it is well known that the map $f_{1}: X \mapsto Y$ of the line $A B$ to line $B C$, defined by the variable tangent to the circle that touches $A B$ and $A C$, is a homography [2, §11]. Similarly the map $f_{2}: Y \mapsto Z$ of the line $B C$ to line $C A$ is a homography, hence their composition $f=f_{2} \circ f_{1}: X \mapsto Z$ is a homography of the line $A B$ to line $A C$. By a well known theorem ([1, p.6]), the line $X Z$ envelopes a conic κ tangent to the lines $A B$ and $A C$. Also we see easily that for special positions of Y the line $X Z$ takes the position of the three common tangents to the two circles, which are different from the line $B C$ (see Figure $7(\mathrm{I})$). The tangent parallel to $B C$ is attained when Y is at infinity and

Figure 7. Ellipse enveloping the lines $X Z$ for $Y \in B C$
the other two are the inner tangents to the circles, defining their intersections Y_{1} and Y_{2} with the line $B C$.
This implies that the conic κ is easily constructed as a tangent to five known lines. The shape of the conic varies with the radius r of the circles. The nature however of the wanted inscribed triangle $X Y Z$, as we remarked in the preceding section, does not allow that two of the three equal circles intersect as this is seen in Figure 7 (II).
Theorem 4.1. With the preceding notation and conventions, if the configuration is admissible, then the conic enveloping the lines $\varepsilon_{Y}=X Z$ is an ellipse contained in the triangle $A B C$.

Figure 8. The monotonic increase of the slope of $\varepsilon_{Y}=X Z$ for $Y \rightarrow \infty$
Proof. We consider the interval $\left[Y_{1}, Y_{2}\right] \subset[B, C]$ defined by the tangents $A Y_{1}$ and $A Y_{2}$ from vertex A, as in Figure 8. We notice then that the tangents $\varepsilon_{Y}=X Z$ for Y varying outside this interval have a monotonic behavior.
In fact, for $Y=Y_{2}$ the tangent $\varepsilon_{Y}=X Z$ coincides with side $A B$ having corresponding $X=X_{2}$ and $Z=A$, where X_{2} is the contact point of the conic with side $A B$ lying also on a tangent to κ_{B} from Y_{2}. As point Y moves on the right of $\left[Y_{1}, Y_{2}\right]$ to infinity, starting from Y_{2}, the slope of the tangent $\varepsilon_{Y}=X Y$ is strictly increasing from that of the line $A B$ to the slope of the common tangent ε_{0} of the circles κ_{B} and κ_{C} which is parallel to $B C$ and is attained for Y at infinity. As Y comes back from infinity to Y_{1} from the left, the slope of the tangent ε_{Y} continues to increase and at $Y=Y_{1}$ the tangent $\varepsilon_{Y}=X Z$ has $X=A$ and Z
coinciding with the contact point Z_{2} of the conic with side $A C$ lying also on a tangent to κ_{C} from Y_{1}. This implies that the lower arc $\left(X_{2} Z_{2}\right)$ of the conic, touching the common tangent ε_{0} of the circles κ_{B} and κ_{C} which is parallel to $B C$, is convex towards $B C$. Thus, from the point A we have two tangents to the conic defining an arc $\left(X_{2} Z_{2}\right)$ concave towards A. The proof follows from the fact that this behavior can occur only for ellipses.

Figure 9. The strip containing the ellipse
Corollary 4.1. There is a second tangent ε_{1} of the ellipse enveloping the lines $\varepsilon_{Y}=X Z$, parallel to line $B C$, and the ellipse lies on the domain defined by the intersection of the triangular domain $A B C$ with the strip defined by the two tangents ε_{0} and ε_{1} which are parallel to the triangle's side BC (see Figure g).

For points $Y \in B C$ lying outside the interval $\left[Y_{1}, Y_{2}\right]$ we see easily that the corresponding tangents $\varepsilon_{Y}=X Z$ touching, as noticed in the proof of the theorem, the lower arc $\left(X_{2} Z_{2}\right)$ of the ellipse, intersect one or the other of the two circles κ_{B} and κ_{C}. Thus they cannot deliver a solution to "the problem" at hand, and we have the following corollary.
Corollary 4.2. If there is a solution to the problem, then the corresponding tangent $\varepsilon_{Y}=X Z$ must touch the upper arc $\left(X_{2} Z_{2}\right)$ of the ellipse and correspond to a point lying in the interval $Y \in\left[Y_{1}, Y_{2}\right]$.

Corollary 4.3. The contact point N of the conic κ with the external common tangent $\varepsilon_{0}=X_{0} Y_{0}$ of the two circles κ_{B} and κ_{C} lies on the Nagel Cevian passing through the vertex A of the triangle $A B C$ (see Figure 10).

Proof. The proof follows directly from the definition of the contact point as the intersection of two infinitely near lying tangents. The tangent $\varepsilon_{0}=X_{0} Z_{0}$ to the conic is obtained when the point Y, defining the tangent $\varepsilon_{Y}=X Z$, is at infinity. Consider then a point Y approaching the point at infinity of the line $B C$ and the corresponding tangent ε_{Y} of κ. Let T be the contact point of κ with ε_{Y}, I be the intersection $\varepsilon_{0} \cap \varepsilon_{Y}, N$ be the intersection of ε_{0} with the Nagel Cevian, and T^{\prime} be the contact point of the excircle λ in the angle \widehat{A} of the triangle $A X Z$. As Y tends to the point at infinity of $B C$, the points T and I tend to coincide with the contact point of ε_{0} with κ and the points I and T^{\prime} tend to coincide with N. Thus, the four points T, I, N and T^{\prime} at the limit coincide with N.

Figure 10. The contact point N on the Nagel Cevian from A
Corollary 4.4. The second tangent $\varepsilon_{1}=X_{1} Z_{1}$ to the conic κ parallel to $B C$ has its contact point M on the Gergonne Cevian through the vertex A of the triangle (see Figure 11).

Figure 11. The contact point M on the Gergonne Cevian from A

Proof. The proof follows by an argument analogous to the one of corollary 4.3, by considering the coincidence of points T, I and I, T^{\prime} with M as the variable tangent tends to coincide with ε_{1}. Here again, T is the contact point of the conic with the variable tangent $\varepsilon_{Y}, I=\varepsilon_{y} \cap \varepsilon_{1}$, and T^{\prime} is the contact point with ε_{Y} of the incircle λ of the triangle $A X Z$.

5. Further restrictions for the solution

Lemma 5.1. There can be no solution of the problem with the line $\varepsilon_{Y}=X Z$ tangent to the upper arc $\left(X_{A} Z_{A}\right)$ of the circle κ_{A} (see Figure 12(I)).

Proof. From the Figure, we see that the lines $X Y$ and $Z Y$ must not intersect the circle κ_{A}. This condition is violated when ε_{Y} touches the upper arc.

Combining this with corollary 4.2 we conclude that the common tangent ε_{Y} of the upper circle κ_{A} and the ellipse of an acceptable solution must separate the circle and the ellipse κ having κ_{A} tangent at a point of its lower arc $\left(X_{A} Z_{A}\right)$

Figure 12. Not acceptable and acceptable location of ε_{Y}
and the conic κ tangent at a point of its upper arc $\left(X_{2} Z_{2}\right)$ (see Figure 12 -(II)). Next lemmata formulate the possible configurations that may arise in a solution of the problem.

Lemma 5.2. The problem has no solutions, if the circle κ_{A} intersects the tangent ε_{1} at two points (see Figure 13-(I)) or lies entirely below ε_{1} (see Figure 13-(II)).

Figure 13. Configurations not allowing solutions to the problem
Proof. If fact, it is not difficult to see geometrically that in both cases the tangents t to the lower arc $\left(X_{A} Z_{A}\right)$ of the circle either intersect the ellipse or they do not produce a common tangent with the conic separating the lower arc $\left(X_{A} Z_{A}\right)$ of the circle and the upper arc $\left(X_{2} Z_{2}\right)$ of the conic.

Lemma 5.3. If the circle κ_{A} does not intersect the upper tangent ε_{1} of the conic κ lying above it, then there exist two solutions of the problem. If the circle κ_{A} touches ε_{1} lying above it, then there is precisely one solution represented by the triangle $X Y Z$ and having $A B C$ as its anticomplementary, i.e. X, Y and Z are the midpoints of the sides of triangle $A B C$.

Proof. If the circle κ_{A} does not intersect ε_{1}, then it does not intersect also the conic lying below ε_{1} (see Figure 14 (I)). We have then precisely two inner common tangents of the circle and the ellipse delivering, each, a solution of the problem.

Figure 14. Configurations of precisely two and one only solution

In case the circle κ_{A} touches the upper tangent $\varepsilon_{1}=X_{1} Z_{1}$ of the ellipse κ, then its contact point is on a Gergonne Cevian of the triangle $A X_{1} Z_{1}$ (see Figure 14 (II)). From the homothecy of triangles $A X_{1} Z_{1}$ and $A B C$, we see that the contact point is also on the Gergonne Cevian of ABC. From corollary 4.4 follows then that the contact points of κ_{A} and κ with ε_{1} coincide with the intersection M of the Gergonne Cevian of $A B C$ from A with line ε_{1} and the triangle $X_{1} Y Z_{1}$ represents then the unique solution of the problem.
There is also a kind of symmetry in the configuration implying that the other sides $Y X_{1}$ and $Y Z_{1}$, under the assumption of a unique solution, must be also parallel to corresponding sides of the triangle. In fact, if they were not, and $Y Z_{1}$, say, was not parallel to $A B$, then, from the preceding discussion, considering a variable point X_{1} on $A B$ we would obtain two acceptable places for X_{1} delivering two solutions, which would contradict our assumption. Thus, the sides of $A B C$ are parallel to corresponding sides of $X_{1} Y Z_{1}$ thereby proving the lemma.

6. The width of the strip

In this section we examine the width of the strip containing the ellipse κ of an admissible configuration and its dependence on the radius r of the three circles (see Figure 15). The parallel $\varepsilon_{0}=X_{0} Z_{0}$ nearer to $B C$ is obviously at distance $2 r$ from it. To determine the distance of $\varepsilon_{1}=X_{1} Z_{1}$ from $B C$ we use the formula expressing the coordinate y of $Y \in B C$ in terms of the coordinate x of $X \in B A$. These coordinates measure the signed distance from B. Thus, $x(B)=y(B)=0, x(A)=c=|A B|$ and $y(C)=a=|B C|$. We use also the analogous coordinate z along line $C A$ with $z(C)=0$ and $z(A)=b=|C A|$. The well known formula ([2, p.13]) uses also the distance d_{B} of the vertex B from the contact points of the sides with the circle κ_{B} :

$$
\begin{equation*}
y=f(x)=\left(d_{B}^{2}+r^{2}\right) \frac{x-d_{B}}{d_{B} x-\left(d_{B}^{2}+r^{2}\right)} . \tag{1}
\end{equation*}
$$

Using the analogous formula and notation to express z in terms of y we have

$$
\begin{equation*}
z=g(y)=\left(d_{C}^{2}+r^{2}\right) \frac{(a-y)-d_{C}}{d_{C}(a-y)-\left(d_{C}^{2}+r^{2}\right)} . \tag{2}
\end{equation*}
$$

The composition is

$$
\begin{equation*}
z=h(x)=g(f(x))= \tag{3}
\end{equation*}
$$

$$
\left(r^{2}+d_{C}^{2}\right) \frac{\left(r^{2}+d_{B}\left(d_{B}+d_{C}-a\right)\right) x-\left(d_{B}+d_{C}-a\right)\left(r^{2}+d_{B}^{2}\right)}{\left.\left(d_{B}+d_{C}\right) r^{2}+d_{B} d_{C}\left(d_{B}+d_{C}-a\right)\right) x-\left(r^{2}+d_{B}^{2}\right)\left(r^{2}+d_{C}\left(d_{B}+d_{C}-a\right)\right.} .
$$

We use this formula to compute the values of x for which the line $\varepsilon_{Y}=X Z$ is horizontal. This, in terms of coordinates, translates to equation

$$
\begin{equation*}
\frac{z}{x}=\frac{b}{c} \tag{4}
\end{equation*}
$$

and leads to a quadratic equation in x with seemingly complicated coefficients.

Figure 15. The strip containing the ellipse
There are however relations leading to considerable simplification. The obvious one suggested by Figure 15 and studied in [5, p.8] is:

$$
\frac{r}{d_{B}}=\tan \left(\frac{\widehat{B}}{2}\right)=\sqrt{\frac{(\tau-a)(\tau-c)}{\tau(\tau-b)}} \Rightarrow r^{2}=d_{B}^{2} \frac{(\tau-a)(\tau-c)}{\tau(\tau-b)}
$$

which allows the elimination of r^{2} from equation (3). Then, combining the last formula with the corresponding

$$
\frac{r}{d_{C}}=\tan \left(\frac{\widehat{C}}{2}\right)=\sqrt{\frac{(\tau-a)(\tau-b)}{\tau(\tau-c)}} \Rightarrow d_{C}=d_{B} \frac{\tau-c}{\tau-b}
$$

we obtain from equations (3) and (4) a quadratic equation in x, whose coefficients can be expressed using only d_{B} and the side-lengths a, b and c of the triangle of reference. In fact, dropping the calculation and coming to the end result, we see that the quadratic equation splits, as expected, into two linear equations

$$
\begin{gather*}
\tau(\tau-b) x-d_{B} a c=0 \tag{5}\\
(\tau-b)\left(\tau(\tau-b)-(b+c) d_{B}\right) x-a c\left(\tau-b-d_{B}\right) d_{B}=0 \tag{6}
\end{gather*}
$$

Denoting by x_{0} and x_{1} the solutions of the first and second equation we come to the expression involving the semi-perimeter τ and the inradius ρ of the triangle of reference

$$
\begin{equation*}
\frac{x_{0}}{x_{1}}=1-\frac{r}{\rho-r} \cdot \frac{\tau-a}{\tau} . \tag{7}
\end{equation*}
$$

As we noticed, x_{0} is the value of x determining the lower parallel to $B C$, which is a common tangent to the circles κ_{B} and κ_{C}. In fact, it can be easily verified that

$$
\begin{align*}
x_{0}= & \frac{2 r}{\sin (\widehat{B})}=\frac{r a c}{\tau \rho} \quad, \quad x_{1}=\frac{a c r(\rho-r)}{\rho(\rho \tau-2 r \tau+a r)}, \tag{8}\\
x_{1}-x_{0}= & \frac{a c(\tau-a)}{\rho \tau} \cdot \frac{r^{2}}{\rho \tau-2 r \tau+a r}, \tag{9}
\end{align*}
$$

which, taking into account that $\sin (\widehat{B})=2 \rho \tau /(a c)$ leads to the expression for the width of the strip

$$
\begin{equation*}
w=\sin (\widehat{B})\left(x_{1}-x_{0}\right)=\frac{2(\tau-a) r^{2}}{\rho \tau-(2 \tau-a) r} . \tag{10}
\end{equation*}
$$

7. Bounds and limits

The value of x_{1} increases from 0 to ∞ as r varies from 0 to the limit of r expressed by $r_{+}=(\rho \tau) /(b+c)$, after which it ceases to be positive (see Figure 16). From the preceding discussion we have that the existence of solutions occurs

Figure 16. The function $x_{1}(r)$
in the half-closed interval $r \in(0, \rho / 2]$. For values of the radius $r>\rho / 2$ we have no solution to the problem but the strip and the conic contained in it continue to exist at least as long as $x_{1}<c$. Figure 17 shows some of the enveloping ellipses for values of $r<r_{0}$ later being the critical radius for which $x_{1}\left(r_{0}\right)=c$. Using equation (8) we obtain for the corresponding r_{0} and x_{0} the values

$$
\begin{equation*}
r_{0}=\frac{\rho}{a}(\tau-\sqrt{\tau(\tau-a)}) \quad \text { and } \quad x_{0}=c\left(1-\sqrt{\frac{\tau-a}{\tau}}\right) . \tag{11}
\end{equation*}
$$

Figure 17. Some enveloping ellipses for values of $r<r_{0}$
Figure 18 (I) shows a typical instance of an ellipse κ as x_{1} tends to coincide with c corresponding to the point A. The contact points N, M of the ellipse with lines $\varepsilon_{0}, \varepsilon_{1}$ move respectively on the Nagel and Gergonne Cevians from A.
As x_{1} tends to A, the internal tangents η_{B} and η_{C} of the circles κ_{B} and κ_{C} tend to the internal tangents ζ_{A} and ξ_{A} of the corresponding limit circles κ_{B} and κ_{C} (see Figure 18 (II)). Also point N tends to the intersection N_{0} of the Nagel Cevian with the corresponding line ε_{0}. The ellipse κ tends to coincide with the

Figure 18. Sangaku from Chiba prefecture as a limit case
segment $A N_{0}$ and the whole limit configuration is the one of the Sangaku from Chiba, with ζ_{A} the common tangent from A of the two equal circles. We notice that ξ_{A} is the symmetric of ζ_{A} with respect to the line of centers of the circles κ_{B}, κ_{C} and passes through N_{0}.

References

[1] M. Chasles, Traité des Sections Coniques, Gauthier-Villars, Paris, 1865. https://books.google.com/books?id=Wm87AQAAIAAJ
[2] P.Pamfilos, Homographic relation, http://users.math.uoc.gr/~pamfilos/eGallery/problems/HomographicRelation. pdf.
[3] P. Pamfilos, Some Remarks on a Sangaku from Chiba, Forum Geometricorum, 2015, vol.15, 275-280. http://forumgeom.fau.edu/FG2015volume15/FG201528index.html
[4] P. Pamfilos, Gergonne Meets Sangaku, Forum Geometricorum, 2017, vol.17, 143-148. http://forumgeom.fau.edu/FG2017volume17/FG201718index.html
[5] P. Pamfilos, Tritangent circles, http://users.math.uoc.gr/~pamfilos/eGallery/problems/Tritangent.pdf.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author and the source are credited.
 ${ }^{2}$ I am greatly indebted to the referee for many detailed suggestions that contributed to a better presentation of this material.

