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Abstract. We present some geometric conditions for the existence of solutions of
a sangaku like configuration involving three equal circles, each touching two sides
of a triangle. In a limit case naturally appearing in this study, the configuration
reduces to the well-known Sangaku from the Chiba prefecture.
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1. Introduction

The present discussion was triggered from a question addressed to me about a
Sangaku-like problem. 2 It was about the configuration of Figure 1.
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Figure 1. A Sangaku-like problem

In this the triangle A′B′C ′ is inscribed in the triangle ABC and is simultaneously
externally tangent to three equal circles κA, κB and κC of radius r, each in turn

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author and the source are credited.

2I am greatly indebted to the referee for many detailed suggestions that contributed to a
better presentation of this material.
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tangent to two sides of ABC and each tangent to a different side of A′B′C ′. It
was to prove that r + r′ = ρ, where ρ is the inradius of ABC.

In fact, it is not difficult to show that the inscribed triangle A′B′C ′ has the same
area and perimeter with the one formed by the centers of the three equal circles
(see Figure 2), from which the result follows immediately.

A

B C

r

r'

C'

A'

B'

Figure 2. Two triangles with equal areas and perimeters

I refer to this, which could be well known, as “the problem”. For the completeness
of exposition I supply a proof in the next section. My interest however focused
on two other questions: (i) How big can be the radius r and have still a triangle
A′B′C ′ as in this configuration? (ii) How many such triangles A′B′C ′ exist for
a given r that allows such an existence? The investigation of some limits for
the existence of solutions to this problem led in a natural way to the well-known
Sangaku from the Chiba prefecture.

Regarding the organization of the article, in section 2 we supply a short proof of
the problem. In section 3 we determine the “admissible configurations” i.e. those
for which we can find a solution to the problem. In section 4 we study an ellipse
intimately connected with the existence of solutions. In section 5 we draw some
further restrictions on the existence of solutions in connection with the aforemen-
tioned ellipse. In section 6 we study the width of a certain strip containing this
ellipse. Finally, in section 7 we discuss some bounds for the existence of solutions
and a resulting limit configuration coinciding with that of the Sangaku from the
Chiba prefecture.

2. Solution of the initial problem

Comparing the tangents from the points B′, C ′ and A′ we see that the perimeters
of the two triangles A′B′C ′ and A0B0C0 are equal (see Figure 3).

For the computation of areas, we notice first that the three quadrangles at the
vertices of ABC : AA1A0A3 , BB1B0B3 and CC1C0C3 , glued together, create
a triangle A′′B′′C ′′ similar to ABC (see Figure 4) with an incircle or radius r.
Hence the similarity ratio is r/ρ. Denoting the semi-perimeters of the triangles
ABC,A′B′C ′, A0B0C0 and A′′B′′C ′′ correspondingly by τ, τ ′, τ0 and τ ′′ and
the corresponding areas E = (ABC) and E ′ = (A′B′C ′), . . . , we have, using the
formulas E = ρτ , E ′ = r′τ ′, . . . :

E ′ = E − (AC ′B′)− (BA′C ′)− (CB′A′) = ρ · τ − r · (τ + τ ′) .
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Figure 3. Two triangles with equal perimeters

But we saw that τ ′ = τ0 and A0B0C0 is similar to ABC in ratio
ρ− r

ρ
. Hence

the semi-perimeter τ ′ of A′B′C ′ is

τ ′ =
(ρ− r)

ρ
τ .

On the other hand, the area E0 = (A0B0C0) results by subtracting from the area
E = (ABC) the areas of the three rectangles and the area E ′′ = (A′′B′′C ′′) :

E0 = E − 2rτ0 −
r2

ρ2
E = ρτ − 2r

ρ− r

ρ
τ − r2

ρ2
ρτ = τ

(ρ− r)2

ρ
.

The claim ρ = r + r′ results obviously from r′ = E ′/τ ′ = E0/τ0 = ρ− r.

A

B C

C'

A'

B'

B
1

C
3

C
2B

2

B
3

C
1

A
1

A
3

A
2

B
0

C
0

A
0 B

0
C
0

A
0

A''

B'' C''

Figure 4. Two triangles with equal areas

3. The admissible configuration

Let us assume that the circles κB and κC , tangent to the side BC, are sufficiently
small. Let also ζB and ζC be the tangents respectively from A to κB and κC

different from the sides AB and AC. Let finally Y1 and Y2 be their intersection
with BC (see Figure 5-(I)).

We see easily, that if there is a chance to find a solution to the problem, the vertex
A′ of the inscribed triangle A′B′C ′ has to be in the interval [Y1, Y2]. The width of
this interval decreases as the equal circles κB and κC become bigger and bigger,
until their radius reaches a critical value, for which the two tangents ζB and ζC
coincide with a common tangent ζ0 to the two circles from A. The circles defined
for this critical value and their common tangent ζ0 through A define the so-called
“Sangaku from the Chiba prefecture” ([3] , [4]) (see Figure 5-(II)).
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For this limit configuration there is obviously no solution to our problem. Hence
the radius r of the circles has to be less than this critical radius of the correspond-
ing Sangaku circles associated to the side BC of the triangle. Since the same
reasoning is valid for any side of the triangle we conclude, that the radius r of the
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Figure 5. Acceptable domain of location of A′

three circles has to be less than the radius of the Sangaku circles corresponding
to the smallest side of the triangle ABC. We call a configuration “admissible” if
it satisfies this restriction. Subsequently we’ll deal with admissible configurations
and we’ll determine also the critical value of r related to the Sangaku from Chiba.

4. An elliptic envelope

The following procedure seems to be a natural way to search for an inscribed
triangle touching the three circles (see Figure 6-(I)): Select a side, BC say, and
move a point Y on it, drawing the tangents Y X and Y Z to the two circles
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Figure 6. Positions of XZ for varying Y ∈ BC

tangent to it and intersecting the other sides at X and Z . As Y moves on BC
it may happen that the segment XZ becomes tangent to the third circle (see
Figure 6-(II)). In fact, it is well known that the map f1 : X 7→ Y of the line AB
to line BC, defined by the variable tangent to the circle that touches AB and
AC, is a homography [2, §11]. Similarly the map f2 : Y 7→ Z of the line BC
to line CA is a homography, hence their composition f = f2 ◦ f1 : X 7→ Z is a
homography of the line AB to line AC. By a well known theorem ([1, p.6]), the
line XZ envelopes a conic κ tangent to the lines AB and AC . Also we see
easily that for special positions of Y the line XZ takes the position of the three
common tangents to the two circles, which are different from the line BC (see
Figure 7-(I)). The tangent parallel to BC is attained when Y is at infinity and
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Figure 7. Ellipse enveloping the lines XZ for Y ∈ BC

the other two are the inner tangents to the circles, defining their intersections Y1

and Y2 with the line BC.

This implies that the conic κ is easily constructed as a tangent to five known
lines. The shape of the conic varies with the radius r of the circles. The nature
however of the wanted inscribed triangle XY Z, as we remarked in the preceding
section, does not allow that two of the three equal circles intersect as this is seen
in Figure 7-(II).

Theorem 4.1. With the preceding notation and conventions, if the configuration
is admissible, then the conic enveloping the lines εY = XZ is an ellipse contained
in the triangle ABC.
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Figure 8. The monotonic increase of the slope of εY = XZ for Y → ∞

Proof. We consider the interval [Y1, Y2] ⊂ [B,C] defined by the tangents AY1 and
AY2 from vertex A, as in Figure 8. We notice then that the tangents εY = XZ
for Y varying outside this interval have a monotonic behavior.

In fact, for Y = Y2 the tangent εY = XZ coincides with side AB having corre-
sponding X = X2 and Z = A, where X2 is the contact point of the conic with
side AB lying also on a tangent to κB from Y2. As point Y moves on the right of
[Y1, Y2] to infinity, starting from Y2, the slope of the tangent εY = XY is strictly
increasing from that of the line AB to the slope of the common tangent ε0 of
the circles κB and κC which is parallel to BC and is attained for Y at infinity.
As Y comes back from infinity to Y1 from the left, the slope of the tangent εY
continues to increase and at Y = Y1 the tangent εY = XZ has X = A and Z
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coinciding with the contact point Z2 of the conic with side AC lying also on
a tangent to κC from Y1. This implies that the lower arc (X2Z2) of the conic,
touching the common tangent ε0 of the circles κB and κC which is parallel to
BC, is convex towards BC. Thus, from the point A we have two tangents to
the conic defining an arc (X2Z2) concave towards A. The proof follows from the
fact that this behavior can occur only for ellipses. □
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Figure 9. The strip containing the ellipse

Corollary 4.1. There is a second tangent ε1 of the ellipse enveloping the lines
εY = XZ, parallel to line BC, and the ellipse lies on the domain defined by
the intersection of the triangular domain ABC with the strip defined by the two
tangents ε0 and ε1 which are parallel to the triangle’s side BC (see Figure 9).

For points Y ∈ BC lying outside the interval [Y1, Y2] we see easily that the
corresponding tangents εY = XZ touching, as noticed in the proof of the theorem,
the lower arc (X2Z2) of the ellipse, intersect one or the other of the two circles
κB and κC . Thus they cannot deliver a solution to “the problem” at hand, and
we have the following corollary.

Corollary 4.2. If there is a solution to the problem, then the corresponding tan-
gent εY = XZ must touch the upper arc (X2Z2) of the ellipse and correspond to
a point lying in the interval Y ∈ [Y1, Y2].

Corollary 4.3. The contact point N of the conic κ with the external common
tangent ε0 = X0Y0 of the two circles κB and κC lies on the Nagel Cevian passing
through the vertex A of the triangle ABC (see Figure 10).

Proof. The proof follows directly from the definition of the contact point as the
intersection of two infinitely near lying tangents. The tangent ε0 = X0Z0 to the
conic is obtained when the point Y, defining the tangent εY = XZ, is at infinity.
Consider then a point Y approaching the point at infinity of the line BC and the
corresponding tangent εY of κ. Let T be the contact point of κ with εY , I be
the intersection ε0 ∩ εY , N be the intersection of ε0 with the Nagel Cevian, and

T ′ be the contact point of the excircle λ in the angle Â of the triangle AXZ.
As Y tends to the point at infinity of BC, the points T and I tend to coincide
with the contact point of ε0 with κ and the points I and T ′ tend to coincide
with N. Thus, the four points T, I,N and T ′ at the limit coincide with N. □
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Figure 10. The contact point N on the Nagel Cevian from A

Corollary 4.4. The second tangent ε1 = X1Z1 to the conic κ parallel to BC
has its contact point M on the Gergonne Cevian through the vertex A of the
triangle (see Figure 11).
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Figure 11. The contact point M on the Gergonne Cevian from A

Proof. The proof follows by an argument analogous to the one of corollary 4.3,
by considering the coincidence of points T, I and I, T ′ with M as the variable
tangent tends to coincide with ε1. Here again, T is the contact point of the conic
with the variable tangent εY , I = εy ∩ ε1, and T ′ is the contact point with εY
of the incircle λ of the triangle AXZ . □

5. Further restrictions for the solution

Lemma 5.1. There can be no solution of the problem with the line εY = XZ
tangent to the upper arc (XAZA) of the circle κA (see Figure 12-(I)).

Proof. From the Figure, we see that the lines XY and ZY must not intersect
the circle κA . This condition is violated when εY touches the upper arc. □
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Combining this with corollary 4.2 we conclude that the common tangent εY of
the upper circle κA and the ellipse of an acceptable solution must separate the
circle and the ellipse κ having κA tangent at a point of its lower arc (XAZA)
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Figure 12. Not acceptable and acceptable location of εY

and the conic κ tangent at a point of its upper arc (X2Z2) (see Figure 12-(II)).
Next lemmata formulate the possible configurations that may arise in a solution
of the problem.

Lemma 5.2. The problem has no solutions, if the circle κA intersects the tangent
ε1 at two points (see Figure 13-(I)) or lies entirely below ε1 (see Figure 13-(II)).
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Figure 13. Configurations not allowing solutions to the problem

Proof. If fact, it is not difficult to see geometrically that in both cases the tangents
t to the lower arc (XAZA) of the circle either intersect the ellipse or they do not
produce a common tangent with the conic separating the lower arc (XAZA) of
the circle and the upper arc (X2Z2) of the conic. □

Lemma 5.3. If the circle κA does not intersect the upper tangent ε1 of the conic
κ lying above it, then there exist two solutions of the problem. If the circle κA

touches ε1 lying above it, then there is precisely one solution represented by the
triangle XY Z and having ABC as its anticomplementary, i.e. X, Y and Z are
the midpoints of the sides of triangle ABC.
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Proof. If the circle κA does not intersect ε1, then it does not intersect also the
conic lying below ε1 (see Figure 14-(I)). We have then precisely two inner common
tangents of the circle and the ellipse delivering, each, a solution of the problem.
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Figure 14. Configurations of precisely two and one only solution

In case the circle κA touches the upper tangent ε1 = X1Z1 of the ellipse κ, then
its contact point is on a Gergonne Cevian of the triangle AX1Z1 (see Figure
14-(II)). From the homothecy of triangles AX1Z1 and ABC, we see that the
contact point is also on the Gergonne Cevian of ABC. From corollary 4.4 follows
then that the contact points of κA and κ with ε1 coincide with the intersection
M of the Gergonne Cevian of ABC from A with line ε1 and the triangle X1Y Z1

represents then the unique solution of the problem.

There is also a kind of symmetry in the configuration implying that the other sides
Y X1 and Y Z1 , under the assumption of a unique solution, must be also parallel
to corresponding sides of the triangle. In fact, if they were not, and Y Z1, say, was
not parallel to AB, then, from the preceding discussion, considering a variable
point X1 on AB we would obtain two acceptable places for X1 delivering two
solutions, which would contradict our assumption. Thus, the sides of ABC are
parallel to corresponding sides of X1Y Z1 thereby proving the lemma. □

6. The width of the strip

In this section we examine the width of the strip containing the ellipse κ of
an admissible configuration and its dependence on the radius r of the three
circles (see Figure 15). The parallel ε0 = X0Z0 nearer to BC is obviously at
distance 2r from it. To determine the distance of ε1 = X1Z1 from BC we
use the formula expressing the coordinate y of Y ∈ BC in terms of the coor-
dinate x of X ∈ BA. These coordinates measure the signed distance from B.
Thus, x(B) = y(B) = 0 , x(A) = c = |AB| and y(C) = a = |BC| . We use also
the analogous coordinate z along line CA with z(C) = 0 and z(A) = b = |CA| .
The well known formula ([2, p.13]) uses also the distance dB of the vertex B
from the contact points of the sides with the circle κB :

(1) y = f(x) = (d2B + r2)
x− dB

dBx− (d2B + r2)
.
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Using the analogous formula and notation to express z in terms of y we have

(2) z = g(y) = (d2C + r2)
(a− y)− dC

dC(a− y)− (d2C + r2)
.

The composition is

z = h(x) = g(f(x)) =(3)

(r2 + d2C)
(r2 + dB(dB + dC − a))x− (dB + dC − a)(r2 + d2B)

(dB + dC)r2 + dBdC(dB + dC − a))x− (r2 + d2B)(r
2 + dC(dB + dC − a)

.

We use this formula to compute the values of x for which the line εY = XZ is
horizontal. This, in terms of coordinates, translates to equation

(4)
z

x
=

b

c
,

and leads to a quadratic equation in x with seemingly complicated coefficients.
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Figure 15. The strip containing the ellipse

There are however relations leading to considerable simplification. The obvious
one suggested by Figure 15 and studied in [5, p.8] is:

r

dB
= tan

(
B̂

2

)
=

√
(τ − a)(τ − c)

τ(τ − b)
⇒ r2 = d2B

(τ − a)(τ − c)

τ(τ − b)
,

which allows the elimination of r2 from equation (3). Then, combining the last
formula with the corresponding

r

dC
= tan

(
Ĉ

2

)
=

√
(τ − a)(τ − b)

τ(τ − c)
⇒ dC = dB

τ − c

τ − b
,

we obtain from equations (3) and (4) a quadratic equation in x, whose coefficients
can be expressed using only dB and the side-lengths a, b and c of the triangle of
reference. In fact, dropping the calculation and coming to the end result, we see
that the quadratic equation splits, as expected, into two linear equations

τ(τ − b)x− dBac = 0 ,(5)

(τ − b)(τ(τ − b)− (b+ c)dB)x− ac(τ − b− dB)dB = 0 .(6)
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Denoting by x0 and x1 the solutions of the first and second equation we come to
the expression involving the semi-perimeter τ and the inradius ρ of the triangle
of reference

(7)
x0

x1

= 1 − r

ρ− r
· τ − a

τ
.

As we noticed, x0 is the value of x determining the lower parallel to BC, which
is a common tangent to the circles κB and κC . In fact, it can be easily verified
that

x0 =
2r

sin(B̂)
=

rac

τρ
, x1 =

acr(ρ− r)

ρ(ρτ − 2rτ + ar)
,(8)

x1 − x0 =
ac(τ − a)

ρτ
· r2

ρτ − 2rτ + ar
,(9)

which, taking into account that sin(B̂) = 2ρτ/(ac) leads to the expression for the
width of the strip

(10) w = sin(B̂)(x1 − x0) =
2(τ − a)r2

ρτ − (2τ − a)r
.

7. Bounds and limits

The value of x1 increases from 0 to ∞ as r varies from 0 to the limit of r
expressed by r+ = (ρτ)/(b+ c), after which it ceases to be positive (see Figure
16). From the preceding discussion we have that the existence of solutions occurs
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Figure 16. The function x1(r)

in the half-closed interval r ∈ (0, ρ/2]. For values of the radius r > ρ/2 we have
no solution to the problem but the strip and the conic contained in it continue to
exist at least as long as x1 < c. Figure 17 shows some of the enveloping ellipses
for values of r < r0 later being the critical radius for which x1(r0) = c. Using
equation (8) we obtain for the corresponding r0 and x0 the values

(11) r0 =
ρ

a

(
τ −

√
τ(τ − a)

)
and x0 = c

(
1−

√
τ − a

τ

)
.
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Figure 17. Some enveloping ellipses for values of r < r0

Figure 18-(I) shows a typical instance of an ellipse κ as x1 tends to coincide with
c corresponding to the point A. The contact points N,M of the ellipse with
lines ε0, ε1 move respectively on the Nagel and Gergonne Cevians from A.

As x1 tends to A, the internal tangents ηB and ηC of the circles κB and κC

tend to the internal tangents ζA and ξA of the corresponding limit circles κB and
κC (see Figure 18-(II)). Also point N tends to the intersection N0 of the Nagel
Cevian with the corresponding line ε0. The ellipse κ tends to coincide with the
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Figure 18. Sangaku from Chiba prefecture as a limit case

segment AN0 and the whole limit configuration is the one of the Sangaku from
Chiba, with ζA the common tangent from A of the two equal circles. We notice
that ξA is the symmetric of ζA with respect to the line of centers of the circles
κB, κC and passes through N0.
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[1] M. Chasles, Traité des Sections Coniques, Gauthier-Villars, Paris, 1865.
https://books.google.com/books?id=Wm87AQAAIAAJ

[2] P.Pamfilos, Homographic relation,
http://users.math.uoc.gr/~pamfilos/eGallery/problems/HomographicRelation.

pdf.
[3] P. Pamfilos, Some Remarks on a Sangaku from Chiba, Forum Geometricorum, 2015, vol.15,

275-280. http://forumgeom.fau.edu/FG2015volume15/FG201528index.html
[4] P. Pamfilos, Gergonne Meets Sangaku, Forum Geometricorum, 2017, vol.17, 143-148.

http://forumgeom.fau.edu/FG2017volume17/FG201718index.html

[5] P. Pamfilos, Tritangent circles,
http://users.math.uoc.gr/~pamfilos/eGallery/problems/Tritangent.pdf.

https://books.google.com/books?id=Wm87AQAAIAAJ
http://users.math.uoc.gr/~pamfilos/eGallery/problems/HomographicRelation.pdf
http://users.math.uoc.gr/~pamfilos/eGallery/problems/HomographicRelation.pdf
http://forumgeom.fau.edu/FG2015volume15/FG201528index.html
http://forumgeom.fau.edu/FG2017volume17/FG201718index.html
http://users.math.uoc.gr/~pamfilos/eGallery/problems/Tritangent.pdf

	1. Introduction
	2. Solution of the initial problem
	3. The admissible configuration
	4. An elliptic envelope
	5. Further restrictions for the solution
	6. The width of the strip
	7. Bounds and limits
	References

