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Abstract. We study some properties of a triad of circles associated with a tri-
angle. Each circle is inside the triangle, tangent to two sides of the triangle, and
externally tangent to the circle on the third side as diameter. In particular, we
find a nice relation involving the radii of the inner and outer Apollonius circles of
the three circles in the triad.
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1. Introduction

Notation. Throughout this paper, we will use the following notation, where
4ABC is a fixed acute triangle in the plane. We let a = BC, b = CA, c = AB, r
is the inradius of4ABC, R is the circumradius of4ABC, p = a+b+c

2
, ∆ = [ABC]

is the area of the triangle, and S = 2∆. We also let I denote the incenter of
4ABC.

The semicircle erected inwardly on side BC will be named ωa as shown in Figure 1
(left). Semicircles ωb and ωc are defined similarly. The circle inside 4ABC,
tangent to sides AB and AC, and externally tangent to semicircle ωa will be
named γa. Circles γb and γc are defined similarly. The radii of circles γa, γb, and
γc are denoted by ρa, ρb, and ρc, respectively. The centers of these circles are
named D, E, and F , respectively, as shown in Figure 1 (right).

For purposes of this paper, these three circles will be called the triad of circles
associated with 4ABC.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Figure 1.

This triad of circles appears in a Sangaku described in [3] and reprinted in [6,
problem 6]. The statement in the Sangaku is given as Theorem 1.1.

Theorem 1.1. For the triad of circles associated with 4ABC, we have

r =
1

2

(
ρa + ρb + ρc +

√
ρ2
a + ρ2

b + ρ2
c

)
.

A proof of this result can be found in [10]. A variant on this result when the
triangle is not acute can also be found in [10].

It is the purpose of this paper to give other properties of such a triad of circles.

2. Known Results

Before giving new results, we summarize some of the properties already known
about the triad of circles. The following five theorems come from [10].

Theorem 2.1. For the triad of circles associated with 4ABC, we have

ρa = r

(
1− tan

A

2

)
.

Similar formulas hold for ρb and ρc.

Theorem 2.2. Let P and Q be the feet of the perpendiculars from D and I to
side AC, respectively. Then PQ = IQ. (Figure 2)
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Figure 2. red lengths are equal
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Theorem 2.3. The lengths of the common external tangents between any two
circles of the triad are equal. The common length is 2r. (Figure 3)

F
E

D

A

B C

Figure 3. blue lengths are equal

Theorem 2.4. The six points of contact of the triad of circles associated with
4ABC lie on a circle with center I and radius r

√
2. (Figure 4)
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Figure 4.

This circle will be called the contact circle.

The following corollary follows immediately from Theorem 2.4.

Corollary 2.1. In Figure 5 showing the contact circle and the incircle, the green
area is equal to the blue area.

I

A

B C

Figure 5. green area = blue area
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Theorem 2.5. For the triad of circles associated with 4ABC, we have

ρ2
a + ρ2

b + ρ2
c =

r2(p− 4R− r)2

p2
. (1)

The following result comes from [4] where it is stated that the result is due to
Tomasz Cieśla.

Theorem 2.6. Let Ta, Tb, and Tc be the touch points of the circles in the triad
with their corresponding semicircles as shown in Figure 6. Then ATa, BTb, and
CTc are concurrent.

Figure 6.

The point of concurrence is catalogued as point X1123 in the Encyclopedia of
Triangle Centers [4]. Since reference [4] does not include a proof of this result, we
will give our own proof later in Section 5 of this paper.

The point X1123 is known as the Paasche point of the triangle because Paasche
proved the following result in [7].

Theorem 2.7. Congruent circles with centers A1 and A2 touch each other exter-
nally at point A′ outside 4ABC. Circle (A1) is tangent to AB and BC. Circle
(A2) is tangent to AC and BC. Points B′ and C ′ are defined similarly (Figure 7).
Then AA′, BB′, and CC ′ are concurrent.

C'

C2

C1

B'

B2

B1

A' A2A1

X1123

A

B C

Figure 7.



58 A Triad of Circles Associated with a Triangle

Remark. The same result is true if the pairs of congruent circles are inside the
triangle instead of outside. Figure 8 illustrates this. (Only the two congruent
circles tangent to side BC are shown.) This result comes from [11, Art. 3.5.4,
ex. 4c].

A''
X1123

A

B
C

Figure 8.

The Paasche point can also be characterized as follows according to [2].

Theorem 2.8. In 4ABC, let ωa, ωb, and ωc be the circles constructed using
sides BC, CA, and AB, respectively, as diameters. Let Ω be the circle internally
tangent to ωa, ωb, and ωc. Let A′ be the touch point between ωa and Ω. Points B′

and C ′ are defined similarly (Figure 9). Then AA′, BB′, and CC ′ are concurrent
at X1123, the Paasche point of 4ABC.

𝛺

𝜔c

𝜔b

𝜔a

X1123

C'

A'

B'A

B C

Figure 9.

A circle that is tangent to three given circles is called an Apollonius circle of those
three circles.

If all three circles lie inside an Apollonius circle, then the Apollonius circle is
called the outer Apollonius circle of the three circles. The outer Apollonius circle
surrounds the three circles and is internally tangent to all three.
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If all three circles lie outside an Apollonius circle, then the Apollonius circle is
called the inner Apollonius circle of the three circles. The inner Apollonius circle
will either be internally tangent to the three given circles or it will be externally
tangent to all the circles. The following theorem comes from [5].

Theorem 2.9. For the triad of circles associated with 4ABC, the inner Apollo-
nius circle of γa, γb, γc, is internally tangent to the inner Apollonius circle of ωa,
ωb, ωc (Figure 10).

Remark. The inner Apollonius circle of γa, γb, γc is known as the 1st Miyamoto-
Moses-Apollonius circle and the outer Apollonius circle of γa, γb, γc is known as
the 2nd Miyamoto-Moses-Apollonius circle (see [5]).

𝛾a

𝛾b

𝛾c

𝜔c

𝜔b

𝜔a

A

B C

Figure 10.

3. Metric Relationships involving ρa, ρb, ρc

In addition to Theorem 1.1 and Theorem 2.5, the following symmetric relationship
involving ρa, ρb, and ρc holds.

Theorem 3.1. For the triad of circles associated with 4ABC, we have

ρaρb + ρbρc + ρcρa − 2r(ρa + ρb + ρc) + 2r2 = 0.

Proof. From Theorem 2.1, we have ρa = r(1 − tan A
2
), ρb = r(1 − tan B

2
), and

ρc = r(1− tan C
2

). Substituting these values into the expression

ρaρb + ρbρc + ρcρa − 2r(ρa + ρb + ρc) + 2r2

and simplifying (using Mathematica), shows that the expression is equal to

−r2 cos

(
A+B + C

2

)
sec

A

2
sec

B

2
sec

C

2
.

Since A+B + C = π, this expression is equal to 0. �

Theorem 3.2. For the triad of circles associated with 4ABC, we have

p(r − ρa)(r − ρb)(r − ρc) = r4.
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Proof. This result follows from Theorem 2.1 and the trigonometric identity

tan
A

2
tan

B

2
tan

C

2
=
r

p

which comes from [1, p. 358]. �

Theorem 3.3. For the triad of circles associated with 4ABC, we have

ρa =
∆− (p− b)(p− c)

p
. (2)

Similar formulas hold for ρb and ρc.

Proof. Using Theorem 2.1 and the well-known identities

tan
A

2
=

r

p− a
and r =

∆

p
,

we get

ρa = r

(
1− r

p− a

)
= r − r2

p− a
=

∆

p
− ∆2

p2(p− a)
(3)

=
∆

p
− p(p− a)(p− b)(p− c)

p2(p− a)
=

∆− (p− b)(p− c)
p

. (4)

This complete the proof. �

4. Barycentric coordinates of centers of γa, γb, γc

Theorem 4.1. The barycentric coordinates of the center of γa are

D = aS + 2(p− b)(p− c)(b+ c) : bS − 2b(p− b)(p− c) : cS − 2c(p− b)(p− c).

Proof. Let y be the distance between D and the sideline BC. Summing the areas
of triangles DBC, DCA and DAB we obtain

ay + bρa + cρa = 2∆. (5)

Plugging (2) into (5) we get

ay + (b+ c) · ∆− (p− b)(p− c)
p

= S

ay + (b+ c) · S − 2(p− b)(p− c)
2p

= S

2pay + (b+ c)S − 2(p− b)(p− c)(b+ c) = (a+ b+ c)S

2pay = 2(p− b)(p− c)(b+ c) + aS

ay =
aS + 2(p− b)(p− c)(b+ c)

2p
(6)

By using (2) and (6), we obtain

D = ∆DBC : ∆DCA : DAB = ay : bρa : cρa

= aS + 2(p− b)(p− c)(b+ c) : bS − 2b(p− b)(p− c) : cS − 2c(p− b)(p− c)

which are the desired barycentric coordinates. �
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Theorem 4.2. The radical center of circles γa, γb and γc is the Gergonne point
of 4ABC.

Proof. Using Mathematica and the package baricentricas.m3, it can be proved
that

(a) the radical axis of γa and γb is (p− a)x− (p− b)y = 0;
(b) the radical axis of γb and γc is (p− b)y − (p− c)z = 0;
(c) the radical axis of γc and γa is (p− a)x− (p− c)z = 0.

An easy verification shows that these radical axes concur at

Ge = (p− b)(p− c) : (p− c)(p− a) : (p− a)(p− b),

which is the Gergonne point of 4ABC. �

We can also give a purely geometric proof.

Proof. Let the incircle touch the sides of 4ABC at Qa, Qb, and Qc as shown in
Figure 11. From Theorem 2.2, QaEa = QaFa = r. Thus, the tangents from Qa

to γb and γc are equal. Since ADc = ADb and DcEc = DbFb (Theorem 2.3), this
means AEc = AFb. Hence the tangents from A to γb and γc are equal. The radical
axis of circles γb and γc is the locus of points such that the lengths of the tangents
to the two circles from that point are equal. The radical axis of two circles is a
straight line. Therefore, the radical axis of circles γb and γc is AQa, the Gergonne
cevian from A.

Similarly, the radical axis of circles γa and γc is the Gergonne cevian from B and
the radical axis of circles γa and γb is the Gergonne cevian from C. Hence, the
radical center of the triad of circles is the intersection point of the three Gergonne
cevians, namely, the Gergonne point of 4ABC. �

𝛾a

𝛾b 𝛾c

Fa

Fb

Dc

Ea

Ec

Db

Qc

Qa

Qb

A

B C

Figure 11.

3The package baricentricas.m written by F.J.G.Capitan can be freely downloaded from
http://garciacapitan.epizy.com/baricentricas/

http://garciacapitan.epizy.com/baricentricas/
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5. A concurrence at the Paasche point.

In [4] the following result is stated.

Theorem 5.1. Suppose that ABC is an acute triangle. Let γa be the circle
touching CA and AB from inside of ABC and also externally tangent to the
semicircle of diameter BC, in point Ta. Define Tb and Tc cyclically (Figure 12).
Then ABC is perspective to TaTbTc, and the perspector is X1123, the Paasche point
of 4ABC.

Figure 12.

Proof. We use homogeneous barycentric coordinates with respect to the triangle
ABC. Let Ma be the midpoint of BC. The point Ta divides the segment joining
the centers of the circles γa and ωa in the ratio ρa : a

2
. Using theorem 4.1 we have

that the sum of coordinates of D is

aS + 2(p− b)(p− c)(b+ c) + bS − 2b(p− b)(p− c) + cS − 2c(p− b)(p− c)
=(a+ b+ c)S + 2(p− b)(p− c)(b+ c)− 2(b+ c)(p− b)(p− c)
=(a+ b+ c)S = 2pS.

Therefore, by writing the coordinates of Ma in the form Ma = 0 : pS : pS, we get

Ta =
a

2
·D + ρa ·Ma.

It follows that the first coordinate of Ta = xa : ya : za is given by

xa =
a

2
(aS + 2(p− b)(p− c)(b+ c)) + ρa · 0

=
a

2
(aS + 2(p− b)(p− c)(b+ c)) .

In a similar way we find that

ya =
a

2
(bS − 2b(p− b)(p− c)) + ρapS

=
1

2
(S − 2(p− b)(p− c)) (ab+ S)
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and

za =
a

2
(cS − 2c(p− b)(p− c)) + ρapS

=
1

2
(S − 2(p− b)(p− c)) (ac+ S).

Hence

Ta =a2S + 2a(p− b)(p− c)(b+ c) :

(S − 2(p− b)(p− c)) (ab+ S) :

(S − 2(p− b)(p− c)) (ac+ S).

The equation of line ATa is zay + yaz = 0, i.e.

ATa : (ac+ S)y − (ab+ S)z = 0.

The cyclic substitution a→ b, b→ c, c→ a gives

BTb : (bc+ S)x− (ab+ S)z = 0,

CTc : (bc+ S)x− (ac+ S)y = 0.

A direct verification shows that ATa, BTb, and CTc concur at the Paasche point

X1123 = (ab+ S)(ac+ S) : (ab+ S)(bc+ S) : (ac+ S)(bc+ S). �

6. Apollonius circles of γa, γb, γc

In order to find the radii of the inner and outer Apollonius circles tangent to γa,
γb, and γc we will use the method explained in [9] and some preliminary lemmas.
The more complicated calculations are performed with Mathematica.

Lemma 6.1. If u = EF , v = DF , w = DE are the distances between the centers
of the circles γa, γb, and γc, we have

u2 =
a(b+ c− a) (a2 + ab+ ac− 2b2 + 4bc− 2c2)

(a+ b+ c)2
,

v2 =
b(a− b+ c) (−2a2 + ab+ 4ac+ b2 + bc− 2c2)

(a+ b+ c)2
,

w2 =
c(a+ b− c) (−2a2 + 4ab+ ac− 2b2 + bc+ c2)

(a+ b+ c)2
.

Proof. From Theorem 3.3, we have

ρa =
∆− (p− b)(p− c)

p
,

and similarly

ρb =
∆− (p− a)(p− c)

p
, ρc =

∆− (p− a)(p− b)
p

.

Assume, without loss of generality, that ρb < ρc. Let E ′ be the foot of the
perpendicular from E to FFa. Applying the Pythagorean Theorem to triangle
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Figure 13.

EFE ′ (see figure 13), taking into account that EE ′ = EaFa = 2r and FE ′ =
ρc − ρb, we obtain

u2 = EF 2 = EaF
2
a + (FFa − EEa)

2 = (2r)2 + (ρc − ρb)2

= 4r2 +

(
(p− a)(p− c)− (p− a)(p− b)

p

)2

= 4 · ∆2

p2
+

(p− a)2(b− c)2

p2

=
4p(p− a)(p− b)(p− c) + (p− a)2(b− c)2

p2

=
a(b+ c− a) (a2 + ab+ ac− 2b2 + 4bc− 2c2)

(a+ b+ c)2
.

The formulas relating to v2 and w2 can be proved in a similar way. �

Lemma 6.2. If θ, ϕ, ψ are three positive real numbers such that θ+ϕ+ψ = 360◦,
then we have

cos2 θ + cos2 ϕ+ cos2 ψ − 2 cos θ cosϕ cosψ = 1.

Proof. Using the addition formulas we have

cos2 θ + cos2 ϕ+ cos2 ψ − 2 cos θ cosϕ cosψ

= cos2 θ + cos2 ϕ+ cos2(360◦ − θ − ϕ)− 2 cos θ cosϕ cos(360◦ − θ − ϕ)

= cos2 θ + cos2 ϕ+ cos2(θ + ϕ)− 2 cos θ cosϕ cos(θ + ϕ)

= cos2 θ + cos2 ϕ+ (cos θ cosϕ− sin θ sinϕ)2 − 2 cos θ cosϕ (cos θ cosϕ− sin θ sinϕ)

= cos2 θ + cos2 ϕ+ cos2 θ cos2 ϕ+ sin2 θ sin2 ϕ− 2 cos2 θ cos2 ϕ

= cos2 θ + cos2 ϕ+ sin2 θ sin2 ϕ− cos2 θ cos2 ϕ

= cos2 θ(1− cos2 ϕ) + cos2 ϕ+ sin2 θ sin2 ϕ

= sin2 ϕ(cos2 θ + sin2 θ) + cos2 ϕ

= sin2 ϕ+ cos2 ϕ = 1. �
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Theorem 6.1. Let ρi be the radius of the inner Apollonius circle externally tan-
gent to γa, γb, and γc (see figure 14). Then

ρ2
i = ρ2

a + ρ2
b + ρ2

c .

Figure 14.

Proof. Let U be the center of the inner Apollonius circle and let x = ρi. Let us
consider the angles ϕa = ∠EUF , ϕb = ∠FUD, and ϕc = ∠DUE.

Since ϕa + ϕb + ϕc = 360◦ by Lemma 6.2 we have

cos2 ϕa + cos2 ϕb + cos2 ϕc − 2 cosϕa cosϕb cosϕc = 1. (7)

If we substitute

ta = sin2 ϕa

2
, tb = sin2 ϕb

2
, tc = sin2 ϕc

2
(8)

in (7), we obtain

t2a + t2b + t2c − 2 (tatb + tbtc + tcta) + 4tat2tc = 0. (9)

Since UD = x+ ρa, UE = x+ ρb, UF = x+ ρc, the Law of Cosines yields

cosϕa =
(x+ ρb)

2 + (x+ ρc)
2 − u2

2(x+ ρb)(x+ ρc)
⇒

ta =
1− cosϕ1

2
=

u2 − (ρb − ρc)2

4(x+ ρb)(x+ ρc)
, (10)

and analogously

tb =
v2 − (ρc − ρa)2

4(x+ ρc)(x+ ρa)
, tc =

w2 − (ρa − ρb)2

4(x+ ρa)(x+ ρb)
. (11)

Plugging (10) and (11) in (9) and using Lemma 6.1, after a straightforward cal-
culation, we get an equation of the form f(x)g(x) = 0, where

f(x) = 6(a+ b+ c)x+ 2ab+ 2bc+ 2ac− a2 − b2 − c2 + 12∆ (12)

and
g(x) = 2(a+ b+ c)x+ a2 + b2 + c2 − 2ab− 2ac− 2bc+ 4∆. (13)

The root of (12) is

x =
a2 + b2 + c2 − 2ab− 2bc− 2ca− 12∆

6(a+ b+ c)
= −2r(4R + r) + 6∆

6p
< 0.
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The root of (13) is

x =
−a2 − b2 − c2 + 2ba+ 2bc+ 2ca− 4∆

2(a+ b+ c)
=
r(4R + r − p)

p
> 0.

Therefore, discarding the negative root, we have ρi = r(4R+r−p)
p

. Hence, taking

into account equation (1), we get

ρ2
i = ρ2

a + ρ2
b + ρ2

c . �

Corollary 6.1. In Figure 15 showing the triad of circles associated with 4ABC
and the inner Apollonius circle externally tangent to each circle in the triad, we
have that the sum of the yellow areas is equal to the green area.

F
E

D

A

B C

Figure 15. yellow area = green area

Theorem 6.2. Let ρo be the radius of the outer Apollonius circle internally tan-
gent to γa, γb, γc (see Figure 16). We have

ρo =
2

3
(ρa + ρb + ρc) +

√
ρ2
a + ρ2

b + ρ2
c .

Figure 16.

Proof. The proof is similar to that of Theorem 6.1. �

Combining Theorem 1.1, Theorem 6.1, and Theorem 6.2, we get the following
nice results.
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Corollary 6.2. The inradius r and the radii ρi, ρo of the Apollonius circles satisfy
the relation

3ρo = ρi + 4r.

Corollary 6.3. The radii ρi, ρo of the Apollonius circles satisfy the relation

3ρo = 2(ρa + ρb + ρc) + 3ρi.

Remark. The centers U and V of the inner and outer Apollonius circles of γa,
γb, and γc are known ETC centers, namely U = X(52805) and V = X(52806).

Theorem 6.3. Let ωi be the inner Apollonius circle, externally tangent to γa, γb,
and γc. Let Ua be the touch point between ωi and γa. Define Ub and Uc cyclically.
Let ωo be the outer Apollonius circle, internally tangent to γa, γb, and γc. Let
Va be the touch point between ωo and γa. Define Vb and Vc cyclically. Let Ge be
the Gergonne point of 4ABC. Then the points A, Va, Ua, and Ge are collinear.
Similarly, the points B, Vb, Ub, and Ge are collinear; and the points C, Vc, Uc,
and Ge are collinear (Figure 17).

Figure 17.

Proof. Clearly, by symmetry, it is enough to prove that A, Va, Ua, and Ge are
collinear. From Theorem 4.2, we know that Ge is the radical center of γa, γb, and
γc. Hence, from the Gergonne construction of Apollonius circles, it follows that
Ua, Va, and Ge are collinear. Therefore, it remains to prove that A, Ua, and Ge are
collinear. To this end we use barycentric coordinates. We have A = 1 : 0 : 0 and
Ge = 1

p−a : 1
p−b : 1

p−c . The point Ua divides the segment DU joining the centers of

the circles γa and ωi in the ratio ρa : ρi. By using Mathematica, we find that

Ua =
−a

(p− b)(p− c)−∆
:

1

p− b
:

1

p− c
.

The points A, Ua, and Ge are collinear because∣∣∣∣∣∣∣∣∣∣
1 0 0

−a
(p−b)(p−c)−∆

1
p−b

1
p−c

1
p−a

1
p−b

1
p−c

∣∣∣∣∣∣∣∣∣∣
= 0.

This completes the proof. �
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Remark. We could also show that the lines AUa, BUb, and CUc are concurrent
by using Theorem 2 of [8]. That theorem also shows that the point of concurrence,
Ge, is the internal center of similitude of the incircle of 4ABC and the circle ωi.

Corollary 6.4. Let Ua be the touch point between γa and ωi (Figure 18). Then
the tangents from Ua to γb and γc are equal.

𝛾a

𝛾b 𝛾c

Ua

A

B C

Figure 18. red tangents are equal

Proof. From Theorem 6.3, AUa is the Gergonne cevian from vertex A. But from
the proof of Theorem 4.2, this Gergonne cevian is the radical axis of circles γb and
γc. Thus the two tangents have the same length. �

Theorem 6.4. Let ωi = (U, ρi), ωo = (V, ρo) be the inner and outer Apollonius
circles externally and internally tangent to γa, γb, and γc, respectively. Let Ua,
Va be the touch point of γa with ωi and ωo respectively. Define Ub, Uc, Vb, Vc
cyclically. Let I = X1, Ge = X7 be the incenter and the Gergonne points of
4ABC respectively (Figure 19). Then U and V lie on the Soddy line IGe and
UI : IV = 3.

Figure 19.

Proof. This follows directly from the barycentric coordinates for U and V . �
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7. Other properties

Theorem 7.1. For the triad of circles associated with 4ABC, let x = ρa, y = ρb,
and z = ρc. Let u, v, w be the radii of the greatest circles inscribed in the circular
segments shown in Figure 20. Then

xw + yu+ zv = xv + zu+ yw.

Figure 20.

Proof. From Theorem 2.1, we have

x = r

(
1− tan

A

2

)
, y = r

(
1− tan

B

2

)
, z = r

(
1− tan

C

2

)
.

Figure 21.

On the other hand, we have (see Figure 21)

u =
1

2
MN =

1

2
BM · tan

A

2
=
a

4
tan

A

2

and similarly

v =
b

4
tan

B

2
, w =

c

4
tan

C

2
.

Observe that

tan
A

2
=

r

s− a
=

∆

s(s− a)
, tan

B

2
=

∆

s(s− b)
, tan

C

2
=

∆

s(s− c)
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so, using the Heron formula ∆2 = s(s− a)(s− b)(s− c), we get

u(y − z) =
a

4
tan

A

2

(
r

(
1− tan

B

2

)
− r

(
1− tan

C

2

))
=
ar

4
tan

A

2

(
tan

C

2
− tan

B

2

)
=
ar

4

(
tan

A

2
tan

C

2
− tan

A

2
tan

B

2

)
=
ar

4

(
∆

s(s− a)

∆

s(s− c)
− ∆

s(s− a)

∆

s(s− b)

)
=
ar

4

(
s− b
s
− s− c

s

)
=
r

4
· ac− ab

s
.

Similarly, we have

v(z − x) =
r

4
· ba− bc

s
, w(x− y) =

r

4
· cb− ca

s
.

Therefore

xw + yu+ zv − (v + zu+ yw) =u(y − z) + v(z − x) + w(x− y)

=
r

4
· ac− ab

s
+
r

4
· ba− bc

s
+
r

4
· cb− ca

s

=
r

4
· ac− ab+ ba− bc+ cb− ca

s
= 0.

This completes the proof. �
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